Feedback of Modern Consolidated Database Environment

 

Since the launch of Oracle 12c R1 Beta Program (August 2012) at Trivadis, we have been intensively testing, engineering and implementing Multitenant architectures for our customers.

Today, we can provide our feedbacks and those of our customers!

The overall feedback related to Oracle Multitenant is very positive, customers have been able to increase flexibility and automation, improving the efficiency of the software development life cycles.

Even the Single-tenant configuration (free of charge) brings few advantages compared to the non-CDB architecture. Therefore, from a technology point of view I recommend adopting the Container Database (CDB) architecture for all Oracle databases.

 

Examples of Multitenant architectures implemented

Having defined Oracle Multitenant a technological revolution on the space of relational databases, when combined with others 12c features it becomes a game changer for flexibility, automation and velocity.

Here are listed few examples of successful architectures implemented with our customers, using Oracle Container Database (CDB):

 

  • Database consolidation without performance and stability compromise here.

 

  • Multitenant and DevOps here.

 

  • Operating Database Disaster Recovery in Multitenant environment here.

 

 


 

Adding Pluggable Databases to an existing Multitenant Data Guard environment

We all know the benefits of the Oracle Multitenant cosolidation “Many-as-One”, one container (CDB) operation for wich many Pluggable Databases (PDBs) can take benefit; for example one CDB backup protects all PDBs stored inside the container itself.

While among the DBAs the setup of Oracle Data Guard is become more than a standandard routine,  described in thousands of Internet pages and blogs (one example available here), this post explains how to add new Pluggable Databases (PDBs) to an existing Multitenant environment protected by Data Guard.

 

How to create PDBs in Oracle Multitenant environment protected by Data Guard

There are multiple scenarios of PDB creation and they differently integrate within the Data Guard architecture. The easiest way to proceed consists in creating a new Pluggable Database using the SEED PDB:

  • PDB creation from SEED
    The creation of a brand new empty pluggable database is automatically replicated to each physical standby database. No additional action is required.

 

Unfortunately, this option is not always applicable because the new PDB should be a clone of an existing one. Therefore, it is important for the DBA to understand how integrating new non-empty Pluggable Database on a Multitenant and Data Guard environment without impacting the pre-existing setup.

 

  • PDB clone 

Cloning a PDB in a Data Guard environment requires few additional steps, which changes across the different Oracle versions and when Active Data Guard option is in use. While remote cloning the PDB the option STANDBYS=NONE should be used to defer the PDB replica to the Standby container. Then it is possible to replicate and protect the newly cloned PDB with Data Guard.

A full example of how to perform those tasks is reported below.

 

Cloning a PDB via DB Link using the STANDBYS=NONE option

create pluggable database PCJORD from PCLORD@ccls01_PCLORD tempfile reuse STANDBYS=NONE;

 

Open the newly cloned PDB

alter pluggable database PCJORD open instances=all;

 

On the Standby Container Restore PDB from Primary

run{
set newname for pluggable database PCJORD to new;
restore pluggable database PCJORD from service CMJP01;
switch datafile all;
}

 

Connect to the Standby container and STOP the Apply Process

dgmgrl
connect sys/xxxxxxxx@CMJP01
edit database 'CMJS01' set state='APPLY-OFF';

 

If Active Data Guard is in use, re-start the Standby container in MOUNT

srvctl stop database -db CMJS01 

sqlplus / as sysdba
startup mount

 

Enable the PDB recovery on the Standby Container

alter session set container=PCJORD;
alter pluggable database enable recovery;

 

Connect to the Standby container and RE-START the Apply Process

dgmdrl
connect sys/xxxxxxxx@CMJP01
edit database 'CMJS01' set state='APPLY-ON';

 

If Active Data Guard is in use Open the Container in Read Only

alter database open;

 

 


 

 

New to Oracle Multitenant?

Multitenant is the biggest architectural change of Oracle 12c and the enabler of many new database options in the years to come. Therefore I have decided to write over the time, few blog posts with basic examples of what should be done and not in a multitenant database environment.

 

Rule #1   – What should not be done

If you are a CDB DBA, always pay attention to which container you are connected to and remember that application data should be stored on Application PDB only!

Unfortunately this golden rule is not-enforced by the RDBMS, but it is left in our responsibility as shown on the example below:

oracle@lxoel7n01:~/ [CDB_TEST] sqlplus / as sysdba

SQL*Plus: Release 12.1.0.2.0 Production on Wed Sep 21 18:28:23 2016

Copyright (c) 1982, 2014, Oracle. All rights reserved.


Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 - 64bit Production
With the Partitioning, Automatic Storage Management, OLAP, Advanced Analytics
and Real Application Testing options

CDB$ROOT SQL>
CDB$ROOT SQL> show user
USER is "SYS"
CDB$ROOT SQL> show con_name

CON_NAME
------------------------------
CDB$ROOT

 

Once connected to the ROOT container let see if I can mistakenly create an application table:

CDB$ROOT SQL> CREATE TABLE EMP_1
(emp_id NUMBER,
emp_name VARCHAR2(25),
start_date DATE,
emp_status VARCHAR2(10) DEFAULT 'ACTIVE',
resume CLOB); 2 3 4 5 6

Table created.

CDB$ROOT SQL> desc emp_1
 Name                                Null?    Type
 ----------------------------------- -------- ----------------------------
 EMP_ID                                        NUMBER
 EMP_NAME                                      VARCHAR2(25)
 START_DATE                                    DATE
 EMP_STATUS                                    VARCHAR2(10)
 RESUME                                        CLOB


CDB$ROOT SQL> insert into emp_1 values (1, 'Emiliano', sysdate, 'active', ' ');

1 row created.

CDB$ROOT SQL> commit;

Commit complete.


CDB$ROOT SQL> select * from emp_1;

EMP_ID     EMP_NAME                  START_DAT EMP_STATUS RESUME
---------- ------------------------- --------- ---------- ----------------
 1          Emiliano                  21-SEP-16 active

CDB$ROOT SQL> show con_name

CON_NAME
------------------------------
CDB$ROOT

The answer is “YES” and the consequences can be devastating…

 

Rule #2   – Overview of Local and Common Entities

Non-schema entities can be created as local or common.  Local entities exist only in one PDB similar to a non-CDB architecture, while Common entities exist in every current and future container.

List of possible Local / Common entities in a Multitenant database:

  • Users
  • Roles
  • Profiles
  • Audit Policies

All Local entities are created from the local PDB and all Common entities are created from the CDB$ROOT container.

Common-user-defined Users, Roles and Profiles require a standard database prefix, defined by the spfile parameter COMMON_USER_PREFIX:

SQL> show parameter common_user_prefix

NAME                              TYPE        VALUE
--------------------------------- ----------- -----------------
common_user_prefix                string      C##

 

Example of Common User creation:

SQL> CREATE USER C##CDB_DBA1 IDENTIFIED BY PWD CONTAINER=ALL;

User created.


SQL> SELECT con_id, username, user_id, common

  2  FROM cdb_users where username='C##CDB_DBA1'  ORDER BY con_id;

    CON_ID USERNAME                USER_ID COMMON
---------- -------------------- ---------- ------
         1 C##CDB_DBA1               102    YES
         2 C##CDB_DBA1               101    YES
         3 C##CDB_DBA1               107    YES
         4 C##CDB_DBA1               105    YES
         5 C##CDB_DBA1               109    YES
         ...

 

Example of Local user creation:

SQL> show con_name

CON_NAME
------------------------------
MYPDB

SQL> CREATE USER application IDENTIFIED BY pwd CONTAINER=CURRENT;

User created.

If we try to create a Local User from the CDB$ROOT container the following error occurs: ORA-65049: creation of local user or role is not allowed in CDB$ROOT

SQL> show con_name

CON_NAME
------------------------------
CDB$ROOT

SQL> CREATE USER application IDENTIFIED BY pwd   CONTAINER=CURRENT;

CREATE USER application IDENTIFIED BY pwd   CONTAINER=CURRENT

                                      *

ERROR at line 1:
ORA-65049: creation of local user or role is not allowed in CDB$ROOT

 

 

Rule #3  – Application should connect through user-defined database services only

We have been avoiding to create user-defined database services for many years, sometimes even for RAC databases. But in Multitenet or Singletenant architecture the importance of user-defined database service is even greater. For each CDB and PDB Oracle is still automatically creating a default service, but as in the past the default services should never be exposed to the applications.

 

To create user-defined database service in stand-alone environment use the package DBMS_SERVICE while connected to the corresponding PDB:

BEGIN
 DBMS_SERVICE.CREATE_SERVICE(
     SERVICE_NAME     => 'mypdb_app.emilianofusaglia.net',
     NETWORK_NAME     => 'mypdb_app.emilianofusaglia.net',
     FAILOVER_METHOD  =>
     ...
      );
 DBMS_SERVICE.START_SERVICE('mypdp_app.emilianofusaglia.net ');
END;
/

The database services will not start automatically after opening a PDB!  Create a database trigger for this purpose.

 

To create user-defined database service in clustered environment use the srvctl utility from the corresponding RDBMS ORACLE_HOME:

oracle@oel7n01:~/ [EFU1] srvctl add service -db EFU \
> -pdb MYPDB -service mypdb_app.emilianofusaglia.net \
> -failovertype SELECT -failovermethod BASIC \
> -failoverdelay 2 -failoverretry 90

 

List all CDB database services order by Container ID:

SQL> SELECT con_id, name, pdb FROM v$services ORDER BY con_id;

    CON_ID NAME                                     PDB
---------- --------------------------------------- -----------------

         1 EFUXDB                                   CDB$ROOT   <-- CDB Default Service 
         1 SYS$BACKGROUND                           CDB$ROOT   <-- CDB Default Service 
         1 SYS$USERS                                CDB$ROOT   <-- CDB Default Service 
         1 EFU.emilianofusaglia.net                 CDB$ROOT   <-- CDB Default Service 
         1 EFU_ADMIN.emilianofusaglia.net           CDB$ROOT   <-- CDB User-defined Service  
         3 mypdb.emilianofusaglia.net               MYPDB      <-- PDB Default Service 
         3 mypdb_app.emilianofusaglia.net           MYPDB      <-- PDB User-defined Service  

7 rows selected.

 

EZCONNECT to a PDB using the user-defined service:

sqlplus <username>/<password>@<host_name>:<local-listener-port>/<service-name>
sqlplus application/pwd@oel7c-scan:1522/mypdb_app.emilianofusaglia.net

 

 

Rule #4  –  Backup/Recovery strategy in Multitenant

As database administrator one of the first responsibility to fulfil is the “Backup/Recovery” strategy. The migration to multitenant database, due to the high level of consolidation density requires to review existing procedures. Few infrastructure operations, like creating a Data Guard or executing a backup, have been shifted from per-database to per-container consolidating the number of tasks.

RMAN in 12c covers all CDB, PDB backup/restore combinations, even though the best practice suggests to run the daily backup at CDB level, and in case of restore needed, the granularity goes down to the single block of one PDB.  Below are reported few basic backup/restore operations in Multitenant environment.

 

Backup a full CDB:

RMAN> connect target /;
RMAN> backup database plus archivelog;

 

Backup a list of PDBs:

RMAN> connect target /;
RMAN> backup pluggable database mypdb, hrpdb plus archivelog;

 

Backup one PDB directly connecting to it:

RMAN> connect target sys/manager@mypdb.emilianofusaglia.net;
RMAN> backup incremental level 0 database;

 

Backup a PDB tablespace:

RMAN> connect target /;
RMAN> backup tablespace mypdb:system;

 

Generate RMAN report:

RMAN> report need backup pluggable database mypdb;

 

Complete PDB Restore

RMAN> connect target /;
RMAN> alter pluggable database mypdb close;
RMAN> restore pluggable database mypdb;
RMAN> recover pluggable database mypdb;
RMAN> alter pluggable database mypdb open;

 

 

Rule #5  –  Before moving to Multitenant

Oracle Multitenant has introduced many architectural changes that force the DBA to evolve how databases are administered. My last golden rule suggests to thoroughly study the multitenant/singletenant architecture before starting any implementation.

During my experiences implementing multitenant/singletenant architectures, I found great dependencies with the following database areas:

  • Provisioning/Decommissioning
  • Patching and Upgrade
  • Backup/recovery
  • Capacity Planning and Management
  • Tuning
  • Separation of duties between CDB and PDB

 

 

Oracle Datapatch on Multitenant environment

The example below shows how to patch a Pluggable Database (PDB) migrated to a Container Database (CDB) whith a different patch level.

 

List the PDB violations

col message for a150
col action for a60
select * FROM pdb_plug_in_violations WHERE STATUS <>'RESOLVED';

TIME NAME CAUSE TYPE ERROR_NUMBER LINE
--------------------------------------------------------------------------- ------------------------------ ---------------------------------------------------------------- --------- ------------ ----------
MESSAGE STATUS ACTION
------------------------------------------------------------------------------------------------------------------------------------------------------ --------- ------------------------------------------------------------
15-07-16 11:33:26.022539 CUSPPO SQL Patch ERROR 0 1
PSU bundle patch 160419 (Database Patch Set Update : 12.1.0.2.160419 (22291127)): Installed in the CDB but not in the PDB. ERROR Call datapatch to install in the PDB or the CDB


1 row selected.

 

Datapatch help

[oracle@zlo6ka1n1 OPatch]$ ./datapatch -h
SQL Patching tool version 12.1.0.2.0 on Wed Jun 15 10:53:36 2016
Copyright (c) 2015, Oracle. All rights reserved.

sqlpatch usage:
All arguments are optional, if there are no arguments sqlpatch
will automatically determine which SQL scripts need to be run in
order to complete the installation of any SQL patches.

Optional arguments:
-db <db name>
 Use the specified database rather than $ORACLE_SID
-bundle_series <bundle_series>
 Specify if the patch is a bundle patch
 Should also be accompanied by -force option
 if -bundle_series option is specified,only 1 patch will
 be considered by the -force command
-apply <patch1,patch2,...,patchn>
 Only consider the specified patch list for apply operations
-rollback <patch1,patch2,...,patchn>
 Only consider the specified patch list for rollback operations
-upgrade_mode_only
 Only consider patches that require upgrade mode
-force
 Run the apply and/or rollback scripts even if not necessary
 per the SQL registry
-pdbs <pdb1,pdb2,...,pdbn>
 Only consider the specified list of PDBs for patching. All
 other PDBs will not be patched
-prereq
 Run prerequisite checks only, do not actually run any scripts
-oh <oracle_home value>
 Use the specified directory to check for installed patches
-verbose
 Output additional information used for debugging
-help
 Output usage information and exit
-version
 Output build information and exit

SQL Patching tool complete on Wed Jul 15 10:53:36 2016

 

Apply the patch to the PDB

[oracle@zlo6ka1n0 OPatch]$ ./datapatch -verbose
SQL Patching tool version 12.1.0.2.0 on Wed Jul 15 11:36:19 2016
Copyright (c) 2015, Oracle. All rights reserved.

Log file for this invocation: /u01/app/oracle/cfgtoollogs/sqlpatch/sqlpatch_59195_2016_07_15_11_36_19/sqlpatch_invocation.log

Connecting to database...OK
Note: Datapatch will only apply or rollback SQL fixes for PDBs
 that are in an open state, no patches will be applied to closed PDBs.
 Please refer to Note: Datapatch: Database 12c Post Patch SQL Automation
 (Doc ID 1585822.1)
Bootstrapping registry and package to current versions...done
Determining current state...done

Current state of SQL patches:
Bundle series PSU:
 ID 160419 in the binary registry and ID 160419 in PDB CDB$ROOT, ID 160419 in PDB PDB$SEED

Adding patches to installation queue and performing prereq checks...
Installation queue:
 For the following PDBs: CDB$ROOT PDB$SEED
 Nothing to roll back
 Nothing to apply
 For the following PDBs: CUSPPO
 Nothing to roll back
 The following patches will be applied:
 22291127 (Database Patch Set Update : 12.1.0.2.160419 (22291127))

Installing patches...
Patch installation complete. Total patches installed: 1

Validating logfiles...
Patch 22291127 apply (pdb CUSPPO): SUCCESS
 logfile: /u01/app/oracle/cfgtoollogs/sqlpatch/22291127/19694308/22291127_apply_CLGBTE_CUSPPO_2016Jul15_11_37_25.log (no errors)
SQL Patching tool complete on Wed Jul 15 11:37:36 2016
[oracle@zlo6ka1n0 OPatch]$

 

 

How to Create and Clone PDBs

################################################
## How to create a PDB Database from Seed DB  ##
################################################

CREATE PLUGGABLE DATABASE pdb01
  ADMIN USER pdb_adm IDENTIFIED BY <password> ROLES=(DBA)
  PATH_PREFIX = '/u01/'
  STORAGE (MAXSIZE 20G MAX_SHARED_TEMP_SIZE 2048M)
  FILE_NAME_CONVERT = ('+DATA01','+DATA02')
  DEFAULT TABLESPACE users DATAFILE '+DATA02' SIZE 10G AUTOEXTEND ON MAXSIZE 20G
  TEMPFILE REUSE;

ALTER PLUGGABLE DATABASE pdb01 OPEN;  
 


 
##################################################
## How to clone a PDB Database running on ASM   ##
##################################################

ALTER PLUGGABLE DATABASE pdb01 CLOSE;  
ALTER PLUGGABLE DATABASE pdb01 OPEN READ ONLY;

CREATE PLUGGABLE DATABASE pdb02 FROM pdb01;

ALTER PLUGGABLE DATABASE pdb01 OPEN READ WRITE;
ALTER PLUGGABLE DATABASE pdb02 OPEN READ WRITE;

 
 
 
##################################################
## How to clone a PDB Database using ACFS Snapshot Copy
##################################################
 
ALTER PLUGGABLE DATABASE pdb03 CLOSE;
ALTER PLUGGABLE DATABASE pdb03 OPEN READ ONLY;
 
 
CREATE PLUGGABLE DATABASE pdb04 FROM pdb03
FILE_NAME_CONVERT = ('/u03/oradata/CDB2/pdb03/','/u03/oradata/CDB2/pdb04/')
SNAPSHOT COPY;

ALTER PLUGGABLE DATABASE pdb03 CLOSE;
ALTER PLUGGABLE DATABASE pdb03 OPEN READ WRITE;
ALTER PLUGGABLE DATABASE pdb04 OPEN READ WRITE;

Create Multitenant DB

#########################################
##      How to create a CDB Database        ##
###############################################

–The ENABLE PLUGGABLE DATABASE clause defines that this is a Container Database.

CREATE DATABASE cdb_01
USER SYS IDENTIFIED BY <password>
USER SYSTEM IDENTIFIED BY <password>
LOGFILE GROUP 1 ('/u01/logs/redo01a.log','/u02/logs/redo01b.log') SIZE 500M BLOCKSIZE 512,
GROUP 2 ('/u01/logs/redo02a.log','/u02/logs/redo02b.log') SIZE 500M BLOCKSIZE 512,
GROUP 3 ('/u01/logs/redo03a.log','/u02/logs/redo03b.log') SIZE 500M BLOCKSIZE 512
MAXLOGHISTORY 1
MAXLOGFILES 16
MAXLOGMEMBERS 3
MAXDATAFILES 1024
CHARACTER SET AL32UTF8
NATIONAL CHARACTER SET AL16UTF16
EXTENT MANAGEMENT LOCAL
DATAFILE '/u01/cdb_01/system01.dbf' SIZE 1024M REUSE AUTOEXTEND ON NEXT 10240K MAXSIZE UNLIMITED
SYSAUX DATAFILE '/u01/cdb_01/sysaux01.dbf' SIZE 1024M REUSE AUTOEXTEND ON NEXT 10240K MAXSIZE UNLIMITED
DEFAULT TABLESPACE USERS DATAFILE '/u01/cdb_01/users01.dbf' SIZE 50M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED
DEFAULT TEMPORARY TABLESPACE TEMP TEMPFILE '/u01/cdb_01/temp01.dbf' SIZE 500M REUSE AUTOEXTEND ON NEXT 640K MAXSIZE UNLIMITED
UNDO TABLESPACE undotbs1 DATAFILE '/u01/cdb_01/undotbs01.dbf' SIZE 500M REUSE AUTOEXTEND ON NEXT 5120K MAXSIZE UNLIMITED
ENABLE PLUGGABLE DATABASE
SEED
FILE_NAME_CONVERT = ('/u01/cdb_01/','/u01/pdbs/pdbseed/')
SYSTEM DATAFILES SIZE 125M AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED
SYSAUX DATAFILES SIZE 100M
USER_DATA TABLESPACE user_data
DATAFILE '/u01/pdbs/pdbseed/user_data.dbf' SIZE 200M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;