Bulk Exadata Patching

After more than 11 year from the launch Oracle Exadata Machine has become popular on many companies across industries, making administrators, developers and final users almost unanimously satisfied about performance and availability.

But also, on Exadata there are cumbersome maintenance activities like patching.

Most of my Exadata customers have acquired 2 non-full RACKs, which makes the patching effort quite reasonable; but recently I started working on a project with multiple full RACKs, with tens of Storage Servers, Compute Nodes and hundreds of Virtual Machines…

A very challenging environment, especially when it came to patching…

Patching all the systems using the standard patchmgr utiliy was not acceptable, therefore I had to replace my standard patching procedure with a new one offering automation and scalability.

At this subject Oracle provides few handy options:

Patching Exadata Infrastructure

  • Storage Server Patching via http/https server: starting with Oracle Exadata System Software release 18.1.0.0.0, it is possible to patch the Storage Servers using an external http server hosting the new software image. The activitiy can be scheduled up to one week before the installation, allowing on each Cell the Management Server (MS) to start downloading and run pre-checks in advance. MS interrupts the software upgrade and generates an alert if the Cell does not comply with all pre-requisites.
  • Unbreakable Linux Network: ULN offers software patches, updates, and fixes for Oracle Linux and Oracle VM. The implementation of a local YUM repository leverages the patch automation of the bare metal OS or dom0/domU.
  • InfiniBand Switch: standard rolling upgrade patching procedure using patchmgr.

Patching Grid Infrastructure & RDBMS

  • GI & RDBMS: those components are patched using the standard Oracle tools common to all platforms, but the entire process has been parallalized using OS tools like dcli commands.

Overview Bulk Exadata Patching


Main Patching Commands

Storage Server – Scheduling Automated Storage Server Update via HTTP/HTTPS

On the Storage Cell set the local Apache location hosting the cell software

[root@efucndb01-a ~]# dcli -l root -g ~/cells cellcli -e 'alter softwareUpdate store=\"http://uln-yum.emilianofusaglia.net/cellsw\"'
efucncel01-a: Software Update successfully altered.
efucncel02-a: Software Update successfully altered.
efucncel03-a: Software Update successfully altered.
efucncel04-a: Software Update successfully altered.
efucncel05-a: Software Update successfully altered.
efucncel06-a: Software Update successfully altered.
efucncel07-a: Software Update successfully altered.
efucncel08-a: Software Update successfully altered.
efucncel09-a: Software Update successfully altered.
efucncel10-a: Software Update successfully altered.
efucncel11-a: Software Update successfully altered.
efucncel12-a: Software Update successfully altered.
efucncel13-a: Software Update successfully altered.
efucncel14-a: Software Update successfully altered.
[root@efucndb01-a ~]#

Schedule the update

[root@efucndb01-a ~]# dcli -l root -g ~/cells cellcli -e 'alter softwareUpdate time=\"03:20 AM WEDNESDAY\"'
efucncel01-a: Software update is scheduled to begin at: 2020-02-05T03:20:00+01:00.
efucncel02-a: Software update is scheduled to begin at: 2020-02-05T03:20:00+01:00.
efucncel03-a: Software update is scheduled to begin at: 2020-02-05T03:20:00+01:00.
efucncel04-a: Software update is scheduled to begin at: 2020-02-05T03:20:00+01:00.
efucncel05-a: Software update is scheduled to begin at: 2020-02-05T03:20:00+01:00.
efucncel06-a: Software update is scheduled to begin at: 2020-02-05T03:20:00+01:00.
efucncel07-a: Software update is scheduled to begin at: 2020-02-05T03:20:00+01:00.
efucncel08-a: Software update is scheduled to begin at: 2020-02-05T03:20:00+01:00.
efucncel09-a: Software update is scheduled to begin at: 2020-02-05T03:20:00+01:00.
efucncel10-a: Software update is scheduled to begin at: 2020-02-05T03:20:00+01:00.
efucncel11-a: Software update is scheduled to begin at: 2020-02-05T03:20:00+01:00.
efucncel12-a: Software update is scheduled to begin at: 2020-02-05T03:20:00+01:00.
efucncel13-a: Software update is scheduled to begin at: 2020-02-05T03:20:00+01:00.
efucncel14-a: Software update is scheduled to begin at: 2020-02-05T03:20:00+01:00.
[root@efucndb01-a ~]#

Verify the scheduled upgrade

[root@efucndb01-a ~]# dcli -l root -g ~/cells cellcli -e 'list softwareupdate detail'
efucncel01-a: name: 19.3.4.0.0.200130
efucncel01-a: status: PreReq OK. Ready to update at: 2020-02-05T03:20:00+01:00
efucncel01-a: store: http://uln-yum.emilianofusaglia.net/cellsw
efucncel01-a: time: 2020-02-05T03:20:00+01:00
efucncel02-a: name: 19.3.4.0.0.200130
efucncel02-a: status: PreReq OK. Ready to update at: 2020-02-05T03:20:00+01:00
efucncel02-a: store: http://uln-yum.emilianofusaglia.net/cellsw
efucncel02-a: time: 2020-02-05T03:20:00+01:00
efucncel03-a: name: 19.3.4.0.0.200130
efucncel03-a: status: PreReq OK. Ready to update at: 2020-02-05T03:20:00+01:00
efucncel03-a: store: http://uln-yum.emilianofusaglia.net/cellsw
efucncel03-a: time: 2020-02-05T03:20:00+01:00
efucncel04-a: name: 19.3.4.0.0.200130
efucncel04-a: status: PreReq OK. Ready to update at: 2020-02-05T03:20:00+01:00
efucncel04-a: store: http://uln-yum.emilianofusaglia.net/cellsw
efucncel04-a: time: 2020-02-05T03:20:00+01:00
efucncel05-a: name: 19.3.4.0.0.200130
efucncel05-a: status: PreReq OK. Ready to update at: 2020-02-05T03:20:00+01:00
efucncel05-a: store: http://uln-yum.emilianofusaglia.net/cellsw
efucncel05-a: time: 2020-02-05T03:20:00+01:00
efucncel06-a: name: 19.3.4.0.0.200130
efucncel06-a: status: PreReq OK. Ready to update at: 2020-02-05T03:20:00+01:00
efucncel06-a: store: http://uln-yum.emilianofusaglia.net/cellsw
efucncel06-a: time: 2020-02-05T03:20:00+01:00
efucncel07-a: name: 19.3.4.0.0.200130
efucncel07-a: status: PreReq OK. Ready to update at: 2020-02-05T03:20:00+01:00
efucncel07-a: store: http://uln-yum.emilianofusaglia.net/cellsw
efucncel07-a: time: 2020-02-05T03:20:00+01:00
efucncel08-a: name: 19.3.4.0.0.200130
efucncel08-a: status: PreReq OK. Ready to update at: 2020-02-05T03:20:00+01:00
efucncel08-a: store: http://uln-yum.emilianofusaglia.net/cellsw
efucncel08-a: time: 2020-02-05T03:20:00+01:00
efucncel09-a: name: 19.3.4.0.0.200130
efucncel09-a: status: PreReq OK. Ready to update at: 2020-02-05T03:20:00+01:00
efucncel09-a: store: http://uln-yum.emilianofusaglia.net/cellsw
efucncel09-a: time: 2020-02-05T03:20:00+01:00
efucncel10-a: name: 19.3.4.0.0.200130
efucncel10-a: status: PreReq OK. Ready to update at: 2020-02-05T03:20:00+01:00
efucncel10-a: store: http://uln-yum.emilianofusaglia.net/cellsw
efucncel10-a: time: 2020-02-05T03:20:00+01:00
efucncel11-a: name: 19.3.4.0.0.200130
efucncel11-a: status: PreReq OK. Ready to update at: 2020-02-05T03:20:00+01:00
efucncel11-a: store: http://uln-yum.emilianofusaglia.net/cellsw
efucncel11-a: time: 2020-02-05T03:20:00+01:00
efucncel12-a: name: 19.3.4.0.0.200130
efucncel12-a: status: PreReq OK. Ready to update at: 2020-02-05T03:20:00+01:00
efucncel12-a: store: http://uln-yum.emilianofusaglia.net/cellsw
efucncel12-a: time: 2020-02-05T03:20:00+01:00
efucncel13-a: name: 19.3.4.0.0.200130
efucncel13-a: status: PreReq OK. Ready to update at: 2020-02-05T03:20:00+01:00
efucncel13-a: store: http://uln-yum.emilianofusaglia.net/cellsw
efucncel13-a: time: 2020-02-05T03:20:00+01:00
efucncel14-a: name: 19.3.4.0.0.200130
efucncel14-a: status: PreReq OK. Ready to update at: 2020-02-05T03:20:00+01:00
efucncel14-a: store: http://uln-yum.emilianofusaglia.net/cellsw
efucncel14-a: time: 2020-02-05T03:20:00+01:00
[root@efucndb01-a ~]#

Unbreakable Linux Network

dom0 checks

[root@efuconsole dbserver_patch_19.200120]# ./patchmgr -dbnodes ~/dom0 -precheck -yum_repo http://uln-yum.emilianofusaglia.net/yum/EngineeredSystems/exadata/dbserver/dom0/19.3.4.0.0/base/x86_64 -target_version 19.3.4.0.0.200130

NOTE patchmgr release: 19.200120 (always check MOS 1553103.1 for the latest release of dbserver.patch.zip)
NOTE
WARNING Do not interrupt the patchmgr session.
WARNING Do not resize the screen. It may disturb the screen layout.
WARNING Do not reboot database nodes during update or rollback.
WARNING Do not open logfiles in write mode and do not try to alter them.

2020-02-06 14:06:17 +0100 :Working: Verify SSH equivalence for the root user to node(s)
2020-02-06 14:06:19 +0100 :SUCCESS: Verify SSH equivalence for the root user to node(s)
2020-02-06 14:06:22 +0100 :Working: Initiate precheck on 8 node(s)
2020-02-06 14:07:36 +0100 :Working: Check free space on node(s)
2020-02-06 14:07:42 +0100 :SUCCESS: Check free space on node(s)
2020-02-06 14:08:07 +0100 :Working: dbnodeupdate.sh running a precheck on node(s).
2020-02-06 14:09:43 +0100 :SUCCESS: Initiate precheck on node(s).
2020-02-06 14:09:45 +0100 :SUCCESS: Completed run of command: ./patchmgr -dbnodes /root/dom0 -precheck -yum_repo http://uln-yum.emilianofusaglia.net/yum/EngineeredSystems/exadata/dbserver/dom0/19.3.4.0.0/base/x86_64 -target_version 19.3.4.0.0.200130
2020-02-06 14:09:45 +0100 :INFO : Precheck attempted on nodes in file /root/dom0: [efucndb01-a efucndb02-a efucndb03-a efucndb04-a efucndb05-a efucndb06-a efucndb07-a efucndb08-a]
2020-02-06 14:09:45 +0100 :INFO : Current image version on dbnode(s) is:
2020-02-06 14:09:45 +0100 :INFO : efucndb01-a: 19.2.6.0.0.190911.1
2020-02-06 14:09:45 +0100 :INFO : efucndb02-a: 19.2.6.0.0.190911.1
2020-02-06 14:09:45 +0100 :INFO : efucndb03-a: 19.2.6.0.0.190911.1
2020-02-06 14:09:45 +0100 :INFO : efucndb04-a: 19.2.6.0.0.190911.1
2020-02-06 14:09:45 +0100 :INFO : efucndb05-a: 19.2.6.0.0.190911.1
2020-02-06 14:09:45 +0100 :INFO : efucndb06-a: 19.2.6.0.0.190911.1
2020-02-06 14:09:45 +0100 :INFO : efucndb07-a: 19.2.6.0.0.190911.1
2020-02-06 14:09:45 +0100 :INFO : efucndb08-a: 19.2.6.0.0.190911.1
2020-02-06 14:09:45 +0100 :INFO : For details, check the following files in /EXAVMIMAGES/Patch/patchmgr_DBSERVER/dbserver_patch_19.200120:
2020-02-06 14:09:45 +0100 :INFO : - _dbnodeupdate.log
2020-02-06 14:09:45 +0100 :INFO : - patchmgr.log
2020-02-06 14:09:45 +0100 :INFO : - patchmgr.trc
2020-02-06 14:09:45 +0100 :INFO : Exit status:0
2020-02-06 14:09:45 +0100 :INFO : Exiting.
[root@efucndb01-a dbserver_patch_19.200120]#

dom0 upgrade

[root@efuconsole dbserver_patch_19.200120]# ./patchmgr -dbnodes ~/dom0 -upgrade -yum_repo http://uln-yum.emilianofusaglia.net/yum/EngineeredSystems/exadata/dbserver/dom0/19.3.4.0.0/base/x86_64 -target_version 19.3.4.0.0.200130

NOTE patchmgr release: 19.200120 (always check MOS 1553103.1 for the latest release of dbserver.patch.zip)
NOTE
NOTE Database nodes will reboot during the update process.
NOTE
WARNING Do not interrupt the patchmgr session.
WARNING Do not resize the screen. It may disturb the screen layout.
WARNING Do not reboot database nodes during update or rollback.
WARNING Do not open logfiles in write mode and do not try to alter them.

2020-02-06 14:29:11 +0100 :Working: Verify SSH equivalence for the root user to node(s)
2020-02-06 14:29:13 +0100 :SUCCESS: Verify SSH equivalence for the root user to node(s)
2020-02-06 14:29:15 +0100 :Working: Initiate prepare steps on node(s).
2020-02-06 14:29:17 +0100 :Working: Check free space on node(s)
2020-02-06 14:29:23 +0100 :SUCCESS: Check free space on node(s)
2020-02-06 14:29:59 +0100 :SUCCESS: Initiate prepare steps on node(s).
2020-02-06 14:29:59 +0100 :Working: Initiate update on 8 node(s).
2020-02-06 14:29:59 +0100 :Working: dbnodeupdate.sh running a backup on 8 node(s).
2020-02-06 14:36:16 +0100 :SUCCESS: dbnodeupdate.sh running a backup on 8 node(s).
2020-02-06 14:36:16 +0100 :Working: Initiate update on node(s)
2020-02-06 14:36:16 +0100 :Working: Get information about any required OS upgrades from node(s).
2020-02-06 14:36:28 +0100 :SUCCESS: Get information about any required OS upgrades from node(s).
2020-02-06 14:36:28 +0100 :Working: dbnodeupdate.sh running an update step on all nodes.
2020-02-06 14:56:38 +0100 :INFO : efucndb01-a is ready to reboot.
2020-02-06 14:56:38 +0100 :INFO : efucndb02-a is ready to reboot.
2020-02-06 14:56:38 +0100 :INFO : efucndb03-a is ready to reboot.
2020-02-06 14:56:38 +0100 :INFO : efucndb04-a is ready to reboot.
2020-02-06 14:56:38 +0100 :INFO : efucndb05-a is ready to reboot.
2020-02-06 14:56:38 +0100 :INFO : efucndb06-a is ready to reboot.
2020-02-06 14:56:38 +0100 :INFO : efucndb07-a is ready to reboot.
2020-02-06 14:56:38 +0100 :INFO : efucndb08-a is ready to reboot.
2020-02-06 14:56:39 +0100 :SUCCESS: dbnodeupdate.sh running an update step on all nodes.
2020-02-06 14:56:51 +0100 :Working: Initiate reboot on node(s)
2020-02-06 14:56:55 +0100 :SUCCESS: Initiate reboot on node(s)
2020-02-06 14:56:55 +0100 :Working: Waiting to ensure node(s) is down before reboot.
2020-02-06 14:58:20 +0100 :SUCCESS: Waiting to ensure node(s) is down before reboot.
2020-02-06 14:58:20 +0100 :Working: Waiting to ensure node(s) is up after reboot.
2020-02-06 15:04:23 +0100 :SUCCESS: Waiting to ensure node(s) is up after reboot.
2020-02-06 15:04:23 +0100 :Working: Waiting to connect to node(s) with SSH. During Linux upgrades this can take some time.
2020-02-06 15:27:46 +0100 :SUCCESS: Waiting to connect to node(s) with SSH. During Linux upgrades this can take some time.
2020-02-06 15:27:46 +0100 :Working: Wait for node(s) is ready for the completion step of update.
2020-02-06 15:31:29 +0100 :SUCCESS: Wait for node(s) is ready for the completion step of update.
2020-02-06 15:31:30 +0100 :Working: Initiate completion step from dbnodeupdate.sh on node(s)
2020-02-06 15:48:10 +0100 :SUCCESS: Initiate completion step from dbnodeupdate.sh on efucndb01-a
2020-02-06 15:48:14 +0100 :SUCCESS: Initiate completion step from dbnodeupdate.sh on efucndb02-a
2020-02-06 15:48:19 +0100 :SUCCESS: Initiate completion step from dbnodeupdate.sh on efucndb03-a
2020-02-06 15:48:30 +0100 :SUCCESS: Initiate completion step from dbnodeupdate.sh on efucndb04-a
2020-02-06 15:48:35 +0100 :SUCCESS: Initiate completion step from dbnodeupdate.sh on efucndb05-a
2020-02-06 15:48:46 +0100 :SUCCESS: Initiate completion step from dbnodeupdate.sh on efucndb06-a
2020-02-06 15:48:50 +0100 :SUCCESS: Initiate completion step from dbnodeupdate.sh on efucndb07-a
2020-02-06 15:49:02 +0100 :SUCCESS: Initiate completion step from dbnodeupdate.sh on efucndb08-a
2020-02-06 15:49:18 +0100 :SUCCESS: Initiate update on node(s).
2020-02-06 15:49:18 +0100 :SUCCESS: Initiate update on 0 node(s).
[INFO ] Collected dbnodeupdate diag in file: Diag_patchmgr_dbnode_upgrade_060220142909.tbz
-rw-r--r-- 1 root root 6381043 Feb 6 15:49 Diag_patchmgr_dbnode_upgrade_060220142909.tbz
2020-02-06 15:49:22 +0100 :SUCCESS: Completed run of command: ./patchmgr -dbnodes /root/dom0 -upgrade -yum_repo http://uln-yum.emilianofusaglia.net/yum/EngineeredSystems/exadata/dbserver/dom0/19.3.4.0.0/base/x86_64 -target_version 19.3.4.0.0.200130
2020-02-06 15:49:22 +0100 :INFO : Upgrade attempted on nodes in file /root/dom0: [efucndb01-a efucndb02-a efucndb03-a efucndb04-a efucndb05-a efucndb06-a efucndb07-a efucndb08-a]
2020-02-06 15:49:22 +0100 :INFO : Current image version on dbnode(s) is:
2020-02-06 15:49:22 +0100 :INFO : efucndb01-a: 19.3.4.0.0.200130
2020-02-06 15:49:22 +0100 :INFO : efucndb02-a: 19.3.4.0.0.200130
2020-02-06 15:49:22 +0100 :INFO : efucndb03-a: 19.3.4.0.0.200130
2020-02-06 15:49:22 +0100 :INFO : efucndb04-a: 19.3.4.0.0.200130
2020-02-06 15:49:22 +0100 :INFO : efucndb05-a: 19.3.4.0.0.200130
2020-02-06 15:49:22 +0100 :INFO : efucndb06-a: 19.3.4.0.0.200130
2020-02-06 15:49:22 +0100 :INFO : efucndb07-a: 19.3.4.0.0.200130
2020-02-06 15:49:22 +0100 :INFO : efucndb08-a: 19.3.4.0.0.200130
2020-02-06 15:49:22 +0100 :INFO : For details, check the following files in /EXAVMIMAGES/Patch/patchmgr_DBSERVER/dbserver_patch_19.200120:
2020-02-06 15:49:22 +0100 :INFO : - _dbnodeupdate.log
2020-02-06 15:49:22 +0100 :INFO : - patchmgr.log
2020-02-06 15:49:22 +0100 :INFO : - patchmgr.trc
2020-02-06 15:49:22 +0100 :INFO : Exit status:0
2020-02-06 15:49:22 +0100 :INFO : Exiting.

InfiniBand Switch

IB switch checks

[root@efucndb01-a patch_switch_19.3.4.0.0.200130]# ./patchmgr -ibswitches ~/ibs -upgrade -ibswitch_precheck
2020-02-10 07:57:44 +0100 :Working: Verify SSH equivalence for the root user to node(s)
2020-02-10 07:57:46 +0100 :SUCCESS: Verify SSH equivalence for the root user to node(s)
2020-02-10 07:57:47 +0100 1 of 1 :Working: Initiate pre-upgrade validation check on InfiniBand switch(es).
----- InfiniBand switch update process started 2020-02-10 07:57:48 +0100 -----
[NOTE ] Log file at /EXAVMIMAGES/Patch/IBs_19.3.4.0.0/patch_switch_19.3.4.0.0.200130/upgradeIBSwitch.log
[INFO ] List of InfiniBand switches for upgrade: ( efucnsw-iba01-a efucnsw-ibb01-a )
[SUCCESS ] Verifying Network connectivity to efucnsw-iba01-a
[SUCCESS ] Verifying Network connectivity to efucnsw-ibb01-a
[SUCCESS ] Validating verify-topology output
[INFO ] Master Subnet Manager is set to "efucnsw-iba01-a" in all Switches
[INFO ] ---------- Starting with InfiniBand Switch efucnsw-iba01-a
[WARNING ] Infiniband switch meets minimal version requirements, but downgrade is only available to 2.2.13-2 with the current package.
To downgrade to other versions:
Manually download the InfiniBand switch firmware package to the patch directory
Set export variable "EXADATA_IMAGE_IBSWITCH_DOWNGRADE_VERSION" to the appropriate version
Run patchmgr command to initiate downgrade.
[SUCCESS ] Verify SSH access to the patchmgr host efucndb01-a.emilianofusaglia.net from the InfiniBand Switch efucnsw-iba01-a.
[INFO ] Starting pre-update validation on efucnsw-iba01-a
[SUCCESS ] Verifying that /tmp has 150M in efucnsw-iba01-a, found 492M
[SUCCESS ] Verifying that / has 20M in efucnsw-iba01-a, found 28M
[SUCCESS ] NTP daemon is running on efucnsw-iba01-a.
[INFO ] Manually validate the following entries Date:(YYYY-aM-DD) 2020-02-10 Time:(HH:MM:SS) 07:58:05
[INFO ] Validating the current firmware on the InfiniBand Switch
[SUCCESS ] Firmware verification on InfiniBand switch efucnsw-iba01-a
[SUCCESS ] Verifying that the patchmgr host efucndb01-a.emilianofusaglia.net is recognized on the InfiniBand Switch efucnsw-iba01-a through getHostByName
[SUCCESS ] Execute plugin check for Patch Check Prereq on efucnsw-iba01-a
[INFO ] Finished pre-update validation on efucnsw-iba01-a
[SUCCESS ] Pre-update validation on efucnsw-iba01-a
[SUCCESS ] Prereq check on efucnsw-iba01-a
[INFO ] ---------- Starting with InfiniBand Switch efucnsw-ibb01-a
[WARNING ] Infiniband switch meets minimal version requirements, but downgrade is only available to 2.2.13-2 with the current package.
To downgrade to other versions:
Manually download the InfiniBand switch firmware package to the patch directory
Set export variable "EXADATA_IMAGE_IBSWITCH_DOWNGRADE_VERSION" to the appropriate version
Run patchmgr command to initiate downgrade.
[SUCCESS ] Verify SSH access to the patchmgr host efucndb01-a.emilianofusaglia.net from the InfiniBand Switch efucnsw-ibb01-a.
[INFO ] Starting pre-update validation on efucnsw-ibb01-a
[SUCCESS ] Verifying that /tmp has 150M in efucnsw-ibb01-a, found 492M
[SUCCESS ] Verifying that / has 20M in efucnsw-ibb01-a, found 28M
[SUCCESS ] NTP daemon is running on efucnsw-ibb01-a.
[INFO ] Manually validate the following entries Date:(YYYY-aM-DD) 2020-02-10 Time:(HH:MM:SS) 07:58:25
[INFO ] Validating the current firmware on the InfiniBand Switch
[SUCCESS ] Firmware verification on InfiniBand switch efucnsw-ibb01-a
[SUCCESS ] Verifying that the patchmgr host efucndb01-a.emilianofusaglia.net is recognized on the InfiniBand Switch efucnsw-ibb01-a through getHostByName
[SUCCESS ] Execute plugin check for Patch Check Prereq on efucnsw-ibb01-a
[INFO ] Finished pre-update validation on efucnsw-ibb01-a
[SUCCESS ] Pre-update validation on efucnsw-ibb01-a
[SUCCESS ] Prereq check on efucnsw-ibb01-a
[SUCCESS ] Overall status
----- InfiniBand switch update process ended 2020-02-10 07:58:42 +0100 -----
2020-02-10 07:58:42 +0100 1 of 1 :SUCCESS: Initiate pre-upgrade validation check on InfiniBand switch(es).
2020-02-10 07:58:42 +0100 :SUCCESS: Completed run of command: ./patchmgr -ibswitches /root/ibs -upgrade -ibswitch_precheck
2020-02-10 07:58:42 +0100 :INFO : upgrade attempted on nodes in file /root/ibs: [efucnsw-iba01-a efucnsw-ibb01-a]
2020-02-10 07:58:42 +0100 :INFO : For details, check the following files in /EXAVMIMAGES/Patch/IBs_19.3.4.0.0/patch_switch_19.3.4.0.0.200130:
2020-02-10 07:58:42 +0100 :INFO : - upgradeIBSwitch.log
2020-02-10 07:58:42 +0100 :INFO : - upgradeIBSwitch.trc
2020-02-10 07:58:42 +0100 :INFO : - patchmgr.stdout
2020-02-10 07:58:42 +0100 :INFO : - patchmgr.stderr
2020-02-10 07:58:42 +0100 :INFO : - patchmgr.log
2020-02-10 07:58:42 +0100 :INFO : - patchmgr.trc
2020-02-10 07:58:42 +0100 :INFO : Exit status:0
2020-02-10 07:58:42 +0100 :INFO : Exiting.
[root@efucndb01-a patch_switch_19.3.4.0.0.200130]#

IB switch upgrade

[root@efucndb01-a patch_switch_19.3.4.0.0.200130]# ./patchmgr -ibswitches ~/ibs -upgrade
2020-02-10 07:59:22 +0100 :Working: Verify SSH equivalence for the root user to node(s)
2020-02-10 07:59:24 +0100 :SUCCESS: Verify SSH equivalence for the root user to node(s)
2020-02-10 07:59:25 +0100 1 of 1 :Working: Initiate upgrade of InfiniBand switches to 2.2.14-1. Expect up to 40 minutes for each switch
----- InfiniBand switch update process started 2020-02-10 07:59:25 +0100 -----
[NOTE ] Log file at /EXAVMIMAGES/Patch/IBs_19.3.4.0.0/patch_switch_19.3.4.0.0.200130/upgradeIBSwitch.log
[INFO ] List of InfiniBand switches for upgrade: ( efucnsw-iba01-a efucnsw-ibb01-a )
[SUCCESS ] Verifying Network connectivity to efucnsw-iba01-a
[SUCCESS ] Verifying Network connectivity to efucnsw-ibb01-a
[SUCCESS ] Validating verify-topology output
[INFO ] Proceeding with upgrade of InfiniBand switches to version 2.2.14_1
[INFO ] Master Subnet Manager is set to "efucnsw-iba01-a" in all Switches
[INFO ] ---------- Starting with InfiniBand Switch efucnsw-iba01-a
[WARNING ] Infiniband switch meets minimal version requirements, but downgrade is only available to 2.2.13-2 with the current package.
To downgrade to other versions:
Manually download the InfiniBand switch firmware package to the patch directory
Set export variable "EXADATA_IMAGE_IBSWITCH_DOWNGRADE_VERSION" to the appropriate version
Run patchmgr command to initiate downgrade.
[SUCCESS ] Verify SSH access to the patchmgr host efucndb01-a.emilianofusaglia.net from the InfiniBand Switch efucnsw-iba01-a.
[INFO ] Starting pre-update validation on efucnsw-iba01-a
[SUCCESS ] Verifying that /tmp has 150M in efucnsw-iba01-a, found 492M
[SUCCESS ] Verifying that / has 20M in efucnsw-iba01-a, found 26M
[SUCCESS ] Service opensmd is running on InfiniBand Switch efucnsw-iba01-a
[SUCCESS ] NTP daemon is running on efucnsw-iba01-a.
[INFO ] Manually validate the following entries Date:(YYYY-aM-DD) 2020-02-10 Time:(HH:MM:SS) 07:59:41
[INFO ] Validating the current firmware on the InfiniBand Switch
[SUCCESS ] Firmware verification on InfiniBand switch efucnsw-iba01-a
[SUCCESS ] Verifying that the patchmgr host efucndb01-a.emilianofusaglia.net is recognized on the InfiniBand Switch efucnsw-iba01-a through getHostByName
[SUCCESS ] Execute plugin check for Patch Check Prereq on efucnsw-iba01-a
[INFO ] Finished pre-update validation on efucnsw-iba01-a
[SUCCESS ] Pre-update validation on efucnsw-iba01-a
[INFO ] Package will be downloaded at firmware update time via scp
[SUCCESS ] Execute plugin check for Patching on efucnsw-iba01-a
[INFO ] Starting upgrade on efucnsw-iba01-a to 2.2.14_1. Please give upto 15 mins for the process to complete. DO NOT INTERRUPT or HIT CTRL+C during the upgrade
[INFO ] Rebooting efucnsw-iba01-a to complete the firmware update. Wait for 15 minutes before continuing. DO NOT MANUALLY REBOOT THE INFINIBAND SWITCH
Connection to efucndb01-a closed by remote host.
Connection to efucndb01-a closed.
2020-02-10 08:27:49 +0100 :Working: Verify SSH equivalence for the root user to node(s)
2020-02-10 08:27:51 +0100 :SUCCESS: Verify SSH equivalence for the root user to node(s)
2020-02-10 08:27:52 +0100 1 of 1 :Working: Initiate upgrade of InfiniBand switches to 2.2.14-1. Expect up to 40 minutes for each switch
----- InfiniBand switch update process started 2020-02-10 08:27:52 +0100 -----
[NOTE ] Log file at /EXAVMIMAGES/Patch/IBs_19.3.4.0.0/patch_switch_19.3.4.0.0.200130/upgradeIBSwitch.log
[INFO ] List of InfiniBand switches for upgrade: ( efucnsw-iba01-a efucnsw-ibb01-a )
[SUCCESS ] Verifying Network connectivity to efucnsw-iba01-a
[SUCCESS ] Verifying Network connectivity to efucnsw-ibb01-a
[INFO ] InfiniBand switch efucnsw-iba01-a is already at target version.
[SUCCESS ] Validating verify-topology output
[INFO ] Proceeding with upgrade of InfiniBand switches to version 2.2.14_1
[INFO ] Master Subnet Manager is set to "efucnsw-ibb01-a" in all Switches
[INFO ] ---------- Starting with InfiniBand Switch efucnsw-ibb01-a
[WARNING ] Infiniband switch meets minimal version requirements, but downgrade is only available to 2.2.13-2 with the current package.
To downgrade to other versions:
Manually download the InfiniBand switch firmware package to the patch directory
Set export variable "EXADATA_IMAGE_IBSWITCH_DOWNGRADE_VERSION" to the appropriate version
Run patchmgr command to initiate downgrade.
[SUCCESS ] Verify SSH access to the patchmgr host efucndb01-a.emilianofusaglia.net from the InfiniBand Switch efucnsw-ibb01-a.
[INFO ] Starting pre-update validation on efucnsw-ibb01-a
[SUCCESS ] Verifying that /tmp has 150M in efucnsw-ibb01-a, found 492M
[SUCCESS ] Verifying that / has 20M in efucnsw-ibb01-a, found 26M
[SUCCESS ] Service opensmd is running on InfiniBand Switch efucnsw-ibb01-a
[SUCCESS ] NTP daemon is running on efucnsw-ibb01-a.
[INFO ] Manually validate the following entries Date:(YYYY-aM-DD) 2020-02-10 Time:(HH:MM:SS) 08:28:07
[INFO ] Validating the current firmware on the InfiniBand Switch
[SUCCESS ] Firmware verification on InfiniBand switch efucnsw-ibb01-a
[SUCCESS ] Verifying that the patchmgr host efucndb01-a.emilianofusaglia.net is recognized on the InfiniBand Switch efucnsw-ibb01-a through getHostByName
[SUCCESS ] Execute plugin check for Patch Check Prereq on efucnsw-ibb01-a
[INFO ] Finished pre-update validation on efucnsw-ibb01-a
[SUCCESS ] Pre-update validation on efucnsw-ibb01-a
[INFO ] Package will be downloaded at firmware update time via scp
[SUCCESS ] Execute plugin check for Patching on efucnsw-ibb01-a
[INFO ] Starting upgrade on efucnsw-ibb01-a to 2.2.14_1. Please give upto 15 mins for the process to complete. DO NOT INTERRUPT or HIT CTRL+C during the upgrade
[INFO ] Rebooting efucnsw-ibb01-a to complete the firmware update. Wait for 15 minutes before continuing. DO NOT MANUALLY REBOOT THE INFINIBAND SWITCH
Connection to efucndb01-a closed by remote host.
Connection to efucndb01-a closed.

Exadata X8M introduces BIG Architectural Changes

Launched at the 2019 Oracle Open Word Conference the Exadata X8M introduces few big architectural changes which make the leading Oracle Database Machine even more attractive.

Among the most relevant changes there are:

  • InfiniBand Network replacement with an Ethernet network fabric
  • Intel Optane DC Persistent Memory inside the Storage Cell
  • New Remote Direct Memory Access (RDMA) functionalities
  • Replacement of the XEN Hypervisor with KVM

InfiniBand Network replacement with an Ethernet network fabric

The characteristic 40Gbit/second InfiniBand network used for all private network communications among database nodes and storage cells has been replaced by a new 100Gbit/second RDMA over Converged Ethernet Fabric (RoCE) based on the Cisco Switch 9336c RoCE .

The new network not only increase 2.5x the throughput but also reduces the communication latancy.

The schema below highlight the network architecture change for all private communications

Intel Optane DC Persistent Memory inside the Storage Cell

Oracle has introduced 1.5TB of Intel Optane DC Persistent Memory as additional storage device inside all Exadata X8M Storage Cell, (no matter if equipped with HC and EF devices), and it is used as accelerator in front of the Flash Memory Cards. In term of speed this new type of ultra fast storage device is located between the DRAM and the Flash Memory, bringing to three the number of multi-tiered storage devices present inside the Storage Cell.

The Exadata unique software is than capable to extract the maximum performance from this HW configuration, automatically detecting and placing the hottest data on the Persistent Memory, reducing the I/O latency of the most critical tasks.

Below is described the list of Storage Cell’s devices ordered by speed.

New Remote Direct Memory Access (RDMA) functionalities

Until now the RDMA was used among database nodes for exchanging Exafusion messages or for Smart Fusion Block Transfer. Starting with Exadata X8M, the RDMA technology is also used to perform direct I/O access to the Persistent Memory of the Storage Cells, bypassing the network and I/O stack and eliminating expensive CPU interrupts and context switches. This optimization reduces the latency by 10x, from 200μs to less than 19μs.

The picture below highlight the “Database Node to Database Node” and the new “Database Node to Storage Cell” communication using RDMA functionalities.

Replacement of the XEN Hypervisor with KVM

Oracle virtualization technology is called Oracle Virtual Machine (OVM) and in a productive invironment it can be implemented with one of this two different products:

  • Xen
  • KVM

Starting with Exadata X8M-2 the virtualization technology in use is KVM instead of Xen. Oracle started replacing Xen with KVM few years ago, for example on the smaller engineered system ODA X7-2M & X7-2S, but for the Exadata took longer, and I think the root cause was the InfiniBand network. Infact KVM is not fully integrated with InfiniBand, and it does not support bridging.

Exadata Deployment with Elastic Configuration

Recently, for one of my customers, I had the chance to install a couples of Exadata X7-2 using the new Elastic Configuration. The major benefits of using Elastic Configuration consists in the possibility to acquire the Exadata Machine with almost any possible combination of Database Nodes and Storage Cells.

In the past we were used to standard Oracle pre-defined Exadata Machine configurations: Eighth Rack, Quarter Rack, Half Rack and Full Rack, which is still possible, but not flexible enough.

The pictures below highlight the differences between the two configurations:

Edadats_Classiv_vs_Elastic

source: Oracle Data Sheet Exadata Database Machine X7-2

 

Deployment Exadata Elactic Configuration

The elastic configuration process automates the initial IP address allocations to databasenodes and storage cells, regardless the ordered configuration.  The Exadata Machine is connected to the InfiniBand switches using a standard cabling methodology which allows to determinate the node’s location in the rack. This information is therefore used when the nodes are powered up for the first time in order to assign the initial default IPs.

[root@exatest-iba0 ~]# ibhosts
Ca : 0x579b0123796ba0 ports 2 "node10 elasticNode 192.168.10.17,192.168.10.18 ETH0"
Ca : 0x579b01237966e0 ports 2 "node8 elasticNode 192.168.10.15,192.168.10.16 ETH0"
Ca : 0x579b0123844ab0 ports 2 "node6 elasticNode 192.168.10.11,192.168.10.12 ETH0"
Ca : 0x579b0123845e50 ports 2 "node5 elasticNode 192.168.10.7,192.168.10.8 ETH0"
Ca : 0x579b0123845fe0 ports 2 "node4 elasticNode 192.168.10.40,172.16.2.40 ETH0"
Ca : 0x579b0123845ea0 ports 2 "node3 elasticNode 192.168.10.9,192.168.10.10 ETH0"
Ca : 0x579b0123812b90 ports 2 "node2 elasticNode 192.168.10.1,192.168.10.2 ETH0"
Ca : 0x579b0123812970 ports 2 "node1 elasticNode 192.168.10.3,192.168.10.4 ETH0"
[root@exatest-iba0 ~]#

 

 

Because the Virtualization option was required,  it has to be activated at this stage:

[root@node8 ~]# /opt/oracle.SupportTools/switch_to_ovm.sh
2019-03-07 01:05:22 -0800 [INFO] Switch to DOM0 system partition /dev/VGExaDb/LVDbSys3 (/dev/mapper/VGExaDb-LVDbSys3)
2019-03-07 01:05:22 -0800 [INFO] Active system device: /dev/mapper/VGExaDb-LVDbSys1
2019-03-07 01:05:22 -0800 [INFO] Active system device in boot area: /dev/mapper/VGExaDb-LVDbSys1
2019-03-07 01:05:23 -0800 [INFO] Set active system device to /dev/VGExaDb/LVDbSys3 in /boot/I_am_hd_boot
2019-03-07 01:05:23 -0800 [INFO] Creating /.elasticConfig on DOM0 boot partition /boot
2019-03-07 01:05:34 -0800 [INFO] Reboot has been initiated to switch to the DOM0 system partition
Connection to 192.168.1.8 closed by remote host.
Connection to 192.168.1.8 closed.
✘

 

After the switch to OVM command it is time to reclaim the space initially used by the Linux bare metal Logical Volumes:

[root@node8 ~]# /opt/oracle.SupportTools/reclaimdisks.sh -free -reclaim
Model is ORACLE SERVER X7-2
Number of LSI controllers: 1
Physical disks found: 4 (252:0 252:1 252:2 252:3)
Logical drives found: 1
Linux logical drive: 0
RAID Level for the Linux logical drive: 5
Physical disks in the Linux logical drive: 4 (252:0 252:1 252:2 252:3)
Dedicated Hot Spares for the Linux logical drive: 0
Global Hot Spares: 0
[INFO ] Check for DOM0 with inactive Linux system disk
[INFO ] Valid DOM0 with inactive Linux system disk is detected
[INFO ] Number of partitions on the system device /dev/sda: 3
[INFO ] Higher partition number on the system device /dev/sda: 3
[INFO ] Last sector on the system device /dev/sda: 3509760000
[INFO ] End sector of the last partition on the system device /dev/sda: 3509759966
[INFO ] Remove inactive system logical volume /dev/VGExaDb/LVDbSys1
[INFO ] Remove logical volume /dev/VGExaDb/LVDbOra1
[INFO ] Extend logical volume /dev/VGExaDb/LVDbExaVMImages
[INFO ] Resize ocfs2 on logical volume /dev/VGExaDb/LVDbExaVMImages
[INFO ] XEN boot version and rpm versions are in sync
[INFO ] XEN EFI files will not be updated
[INFO ] Force setup grub
[root@node8 ~]#

 

Check the success of the reclaim disks procedure:

[root@node8 ~]# /opt/oracle.SupportTools/reclaimdisks.sh -check
Model is ORACLE SERVER X7-2
Number of LSI controllers: 1
Physical disks found: 4 (252:0 252:1 252:2 252:3)
Logical drives found: 1
Linux logical drive: 0
RAID Level for the Linux logical drive: 5
Physical disks in the Linux logical drive: 4 (252:0 252:1 252:2 252:3)
Dedicated Hot Spares for the Linux logical drive: 0
Global Hot Spares: 0
Valid. Disks configuration: RAID5 from 4 disks with no global and dedicated hot spare disks.
Valid. Booted: DOM0. Layout: DOM0.
[root@node8 ~]#

 

Upload the Oracle Exadata Database Machine Deployment Assistant configuration files to the database server, together with all software images, and run the One command procedure.

List of all Steps

[root@exatestdbadm01 linux-x64]# ./install.sh -cf TVD-exatest.xml -l
Initializing

1. Validate Configuration File
2. Update Nodes for Eighth Rack
3. Create Virtual Machine
4. Create Users
5. Setup Cell Connectivity
6. Calibrate Cells
7. Create Cell Disks
8. Create Grid Disks
9. Install Cluster Software
10. Initialize Cluster Software
11. Install Database Software
12. Relink Database with RDS
13. Create ASM Diskgroups
14. Create Databases
15. Apply Security Fixes
16. Install Exachk
17. Create Installation Summary
18. Resecure Machine
[root@exatestdbadm01 linux-x64]#

 

Run Step One to validate the setup

This example includes the creation of three different Clusters.

[root@exatestdbadm01 linux-x64]# ./install.sh -cf TVD-exatest.xml -s 1
Initializing
Executing Validate Configuration File
Validating cluster: Cluster-EFU
Locating machines...
Verifying operating systems...
Validating cluster networks...
Validating network connectivity...
Validating private ips on virtual cluster
Validating NTP setup...
Validating physical disks on storage cells...
Validating users...
Validating cluster: Cluster-PR1
Locating machines...
Verifying operating systems...
Validating cluster networks...
Validating network connectivity...
Validating private ips on virtual cluster
Validating NTP setup...
Validating physical disks on storage cells...
Validating users...
Validating cluster: Cluster-VAL
Locating machines...
Verifying operating systems...
Validating cluster networks...
Validating network connectivity...
Validating private ips on virtual cluster
Validating NTP setup...
Validating physical disks on storage cells...
Validating users...
Validating platinum...
Validating switches...
Checking disk reclaim status...
Checking Disk Tests Status....
Completed validation...

SUCCESS: Ip address: 10.x8.xx.40 is configured correctly
SUCCESS: Ip address: 10.x9.xx.55 is configured correctly
SUCCESS: Ip address: 10.x8.xx.41 is configured correctly
SUCCESS: Ip address: 10.x9.xx.56 is configured correctly
SUCCESS: Ip address: 10.x8.xx.45 is configured correctly
SUCCESS: Ip address: 10.x8.xx.46 is configured correctly
SUCCESS: Ip address: 10.x8.xx.44 is configured correctly
SUCCESS: Ip address: 10.x8.xx.43 is configured correctly
SUCCESS: Ip address: 10.x8.xx.42 is configured correctly
SUCCESS: 10.x8.xx.40 configured correctly on exatestceladm01.my.domain.com
SUCCESS: 10.x9.xx.55 configured correctly on exatestceladm01.my.domain.com
SUCCESS: 10.x8.xx.41 configured correctly on exatestceladm01.my.domain.com
SUCCESS: 10.x9.xx.56 configured correctly on exatestceladm01.my.domain.com
SUCCESS: 10.x8.xx.45 configured correctly on exatestceladm01.my.domain.com
SUCCESS: 10.x8.xx.46 configured correctly on exatestceladm01.my.domain.com
SUCCESS: 10.x8.xx.44 configured correctly on exatestceladm01.my.domain.com
SUCCESS: 10.x8.xx.43 configured correctly on exatestceladm01.my.domain.com
SUCCESS: 10.x8.xx.42 configured correctly on exatestceladm01.my.domain.com
SUCCESS: 10.x8.xx.40 configured correctly on exatestceladm02.my.domain.com
SUCCESS: 10.x9.xx.55 configured correctly on exatestceladm02.my.domain.com
SUCCESS: 10.x8.xx.41 configured correctly on exatestceladm02.my.domain.com
SUCCESS: 10.x9.xx.56 configured correctly on exatestceladm02.my.domain.com
SUCCESS: 10.x8.xx.45 configured correctly on exatestceladm02.my.domain.com
SUCCESS: 10.x8.xx.46 configured correctly on exatestceladm02.my.domain.com
SUCCESS: 10.x8.xx.44 configured correctly on exatestceladm02.my.domain.com
SUCCESS: 10.x8.xx.43 configured correctly on exatestceladm02.my.domain.com
SUCCESS: 10.x8.xx.42 configured correctly on exatestceladm02.my.domain.com
SUCCESS: 10.x8.xx.40 configured correctly on exatestceladm03.my.domain.com
SUCCESS: 10.x9.xx.55 configured correctly on exatestceladm03.my.domain.com
SUCCESS: 10.x8.xx.41 configured correctly on exatestceladm03.my.domain.com
SUCCESS: 10.x9.xx.56 configured correctly on exatestceladm03.my.domain.com
SUCCESS: 10.x8.xx.45 configured correctly on exatestceladm03.my.domain.com
SUCCESS: 10.x8.xx.46 configured correctly on exatestceladm03.my.domain.com
SUCCESS: 10.x8.xx.44 configured correctly on exatestceladm03.my.domain.com
SUCCESS: 10.x8.xx.43 configured correctly on exatestceladm03.my.domain.com
SUCCESS: 10.x8.xx.42 configured correctly on exatestceladm03.my.domain.com
SUCCESS: Ip address: 10.x8.xx.47 is configured correctly
SUCCESS: Ip address: 10.x9.xx.57 is configured correctly
SUCCESS: Ip address: 10.x8.xx.48 is configured correctly
SUCCESS: Ip address: 10.x9.xx.58 is configured correctly
SUCCESS: Ip address: 10.x8.xx.52 is configured correctly
SUCCESS: Ip address: 10.x8.xx.51 is configured correctly
SUCCESS: Ip address: 10.x8.xx.53 is configured correctly
SUCCESS: Ip address: 10.x8.xx.50 is configured correctly
SUCCESS: Ip address: 10.x8.xx.49 is configured correctly
SUCCESS: 10.x8.xx.47 configured correctly on exatestceladm01.my.domain.com
SUCCESS: 10.x9.xx.57 configured correctly on exatestceladm01.my.domain.com
SUCCESS: 10.x8.xx.48 configured correctly on exatestceladm01.my.domain.com
SUCCESS: 10.x9.xx.58 configured correctly on exatestceladm01.my.domain.com
SUCCESS: 10.x8.xx.52 configured correctly on exatestceladm01.my.domain.com
SUCCESS: 10.x8.xx.51 configured correctly on exatestceladm01.my.domain.com
SUCCESS: 10.x8.xx.53 configured correctly on exatestceladm01.my.domain.com
SUCCESS: 10.x8.xx.50 configured correctly on exatestceladm01.my.domain.com
SUCCESS: 10.x8.xx.49 configured correctly on exatestceladm01.my.domain.com
SUCCESS: 10.x8.xx.47 configured correctly on exatestceladm02.my.domain.com
SUCCESS: 10.x9.xx.57 configured correctly on exatestceladm02.my.domain.com
SUCCESS: 10.x8.xx.48 configured correctly on exatestceladm02.my.domain.com
SUCCESS: 10.x9.xx.58 configured correctly on exatestceladm02.my.domain.com
SUCCESS: 10.x8.xx.52 configured correctly on exatestceladm02.my.domain.com
SUCCESS: 10.x8.xx.51 configured correctly on exatestceladm02.my.domain.com
SUCCESS: 10.x8.xx.53 configured correctly on exatestceladm02.my.domain.com
SUCCESS: 10.x8.xx.50 configured correctly on exatestceladm02.my.domain.com
SUCCESS: 10.x8.xx.49 configured correctly on exatestceladm02.my.domain.com
SUCCESS: 10.x8.xx.47 configured correctly on exatestceladm03.my.domain.com
SUCCESS: 10.x9.xx.57 configured correctly on exatestceladm03.my.domain.com
SUCCESS: 10.x8.xx.48 configured correctly on exatestceladm03.my.domain.com
SUCCESS: 10.x9.xx.58 configured correctly on exatestceladm03.my.domain.com
SUCCESS: 10.x8.xx.52 configured correctly on exatestceladm03.my.domain.com
SUCCESS: 10.x8.xx.51 configured correctly on exatestceladm03.my.domain.com
SUCCESS: 10.x8.xx.53 configured correctly on exatestceladm03.my.domain.com
SUCCESS: 10.x8.xx.50 configured correctly on exatestceladm03.my.domain.com
SUCCESS: 10.x8.xx.49 configured correctly on exatestceladm03.my.domain.com
SUCCESS: Ip address: 10.x8.xx.54 is configured correctly
SUCCESS: Ip address: 10.x9.xx.59 is configured correctly
SUCCESS: Ip address: 10.x8.xx.55 is configured correctly
SUCCESS: Ip address: 10.x9.xx.60 is configured correctly
SUCCESS: Ip address: 10.x8.xx.58 is configured correctly
SUCCESS: Ip address: 10.x8.xx.60 is configured correctly
SUCCESS: Ip address: 10.x8.xx.59 is configured correctly
SUCCESS: Ip address: 10.x8.xx.57 is configured correctly
SUCCESS: Ip address: 10.x8.xx.56 is configured correctly
SUCCESS: 10.x8.xx.54 configured correctly on exatestceladm01.my.domain.com
SUCCESS: 10.x9.xx.59 configured correctly on exatestceladm01.my.domain.com
SUCCESS: 10.x8.xx.55 configured correctly on exatestceladm01.my.domain.com
SUCCESS: 10.x9.xx.60 configured correctly on exatestceladm01.my.domain.com
SUCCESS: 10.x8.xx.58 configured correctly on exatestceladm01.my.domain.com
SUCCESS: 10.x8.xx.60 configured correctly on exatestceladm01.my.domain.com
SUCCESS: 10.x8.xx.59 configured correctly on exatestceladm01.my.domain.com
SUCCESS: 10.x8.xx.57 configured correctly on exatestceladm01.my.domain.com
SUCCESS: 10.x8.xx.56 configured correctly on exatestceladm01.my.domain.com
SUCCESS: 10.x8.xx.54 configured correctly on exatestceladm02.my.domain.com
SUCCESS: 10.x9.xx.59 configured correctly on exatestceladm02.my.domain.com
SUCCESS: 10.x8.xx.55 configured correctly on exatestceladm02.my.domain.com
SUCCESS: 10.x9.xx.60 configured correctly on exatestceladm02.my.domain.com
SUCCESS: 10.x8.xx.58 configured correctly on exatestceladm02.my.domain.com
SUCCESS: 10.x8.xx.60 configured correctly on exatestceladm02.my.domain.com
SUCCESS: 10.x8.xx.59 configured correctly on exatestceladm02.my.domain.com
SUCCESS: 10.x8.xx.57 configured correctly on exatestceladm02.my.domain.com
SUCCESS: 10.x8.xx.56 configured correctly on exatestceladm02.my.domain.com
SUCCESS: 10.x8.xx.54 configured correctly on exatestceladm03.my.domain.com
SUCCESS: 10.x9.xx.59 configured correctly on exatestceladm03.my.domain.com
SUCCESS: 10.x8.xx.55 configured correctly on exatestceladm03.my.domain.com
SUCCESS: 10.x9.xx.60 configured correctly on exatestceladm03.my.domain.com
SUCCESS: 10.x8.xx.58 configured correctly on exatestceladm03.my.domain.com
SUCCESS: 10.x8.xx.60 configured correctly on exatestceladm03.my.domain.com
SUCCESS: 10.x8.xx.59 configured correctly on exatestceladm03.my.domain.com
SUCCESS: 10.x8.xx.57 configured correctly on exatestceladm03.my.domain.com
SUCCESS: 10.x8.xx.56 configured correctly on exatestceladm03.my.domain.com
SUCCESS: Validated NTP server 10.x3.xx.xx0
SUCCESS: Validated NTP server 10.x3.xx.xx1
SUCCESS: Required file /EXAVMIMAGES/onecommand/linux-x64/WorkDir/p28514222_122118_Linux-x86-64.zip exists...
SUCCESS: Required file /EXAVMIMAGES/onecommand/linux-x64/WorkDir/p28762988_12201181016GIOCT2018RU_Linux-x86-64.zip exists...
SUCCESS: Required file /EXAVMIMAGES/onecommand/linux-x64/WorkDir/p28762989_12201181016DBOCT2018RU_Linux-x86-64.zip exists...
SUCCESS: Required file config/exachk.zip exists...
SUCCESS: Found Operating system LinuxPhysical and configuration file expects LinuxPhysical on machine exatestceladm03.my.domain.com, machine type: storage
SUCCESS: Found Operating system LinuxPhysical and configuration file expects LinuxPhysical on machine exatestceladm02.my.domain.com, machine type: storage
SUCCESS: Found Operating system LinuxPhysical and configuration file expects LinuxPhysical on machine exatestceladm01.my.domain.com, machine type: storage
SUCCESS: Expected machine exatestdbadm01.my.domain.com to have OS Type of Linux Dom0, and found OsType LinuxDom0
SUCCESS: Expected machine exatestdbadm02.my.domain.com to have OS Type of Linux Dom0, and found OsType LinuxDom0
SUCCESS: NTP servers on machine exatestceladm02.my.domain.com verified successfully
SUCCESS: NTP servers on machine exatestceladm01.my.domain.com verified successfully
SUCCESS: NTP servers on machine exatestceladm03.my.domain.com verified successfully
SUCCESS: NTP servers on machine exatestdbadm01.my.domain.com verified successfully
SUCCESS: NTP servers on machine exatestdbadm02.my.domain.com verified successfully
SUCCESS: Sufficient memory for all the guests on database node exatestdbadm02.my.domain.com
SUCCESS: Sufficient memory for all the guests on database node exatestdbadm01.my.domain.com
SUCCESS: Expected machine exatestdbadm02.my.domain.com to have OS Type of Linux Dom0, and found OsType LinuxDom0
SUCCESS: Found Operating system LinuxPhysical and configuration file expects LinuxPhysical on machine exatestceladm01.my.domain.com, machine type: storage
SUCCESS: Found Operating system LinuxPhysical and configuration file expects LinuxPhysical on machine exatestceladm02.my.domain.com, machine type: storage
SUCCESS: Expected machine exatestdbadm01.my.domain.com to have OS Type of Linux Dom0, and found OsType LinuxDom0
SUCCESS: Found Operating system LinuxPhysical and configuration file expects LinuxPhysical on machine exatestceladm03.my.domain.com, machine type: storage
SUCCESS: NTP servers on machine exatestceladm03.my.domain.com verified successfully
SUCCESS: NTP servers on machine exatestceladm01.my.domain.com verified successfully
SUCCESS: NTP servers on machine exatestceladm02.my.domain.com verified successfully
SUCCESS: NTP servers on machine exatestdbadm02.my.domain.com verified successfully
SUCCESS: NTP servers on machine exatestdbadm01.my.domain.com verified successfully
SUCCESS: Sufficient memory for all the guests on database node exatestdbadm02.my.domain.com
SUCCESS: Sufficient memory for all the guests on database node exatestdbadm01.my.domain.com
SUCCESS: Found Operating system LinuxPhysical and configuration file expects LinuxPhysical on machine exatestceladm03.my.domain.com, machine type: storage
SUCCESS: Found Operating system LinuxPhysical and configuration file expects LinuxPhysical on machine exatestceladm02.my.domain.com, machine type: storage
SUCCESS: Found Operating system LinuxPhysical and configuration file expects LinuxPhysical on machine exatestceladm01.my.domain.com, machine type: storage
SUCCESS: Expected machine exatestdbadm02.my.domain.com to have OS Type of Linux Dom0, and found OsType LinuxDom0
SUCCESS: Expected machine exatestdbadm01.my.domain.com to have OS Type of Linux Dom0, and found OsType LinuxDom0
SUCCESS: NTP servers on machine exatestceladm03.my.domain.com verified successfully
SUCCESS: NTP servers on machine exatestceladm02.my.domain.com verified successfully
SUCCESS: NTP servers on machine exatestceladm01.my.domain.com verified successfully
SUCCESS: NTP servers on machine exatestdbadm01.my.domain.com verified successfully
SUCCESS: NTP servers on machine exatestdbadm02.my.domain.com verified successfully
SUCCESS: Sufficient memory for all the guests on database node exatestdbadm02.my.domain.com
SUCCESS: Sufficient memory for all the guests on database node exatestdbadm01.my.domain.com
SUCCESS: Switch IP 10.x9.xx.51 resolves successfully to host exatest-iba0.my.domain.com on node exatestceladm03.my.domain.com
SUCCESS:
SUCCESS: Switch IP 10.x9.xx.51 resolves successfully to host exatest-iba0.my.domain.com on node exatestceladm02.my.domain.com
SUCCESS: Switch IP 10.x9.xx.52 resolves successfully to host exatest-ibb0.my.domain.com on node exatestceladm03.my.domain.com
SUCCESS:
SUCCESS:
SUCCESS:
SUCCESS: Switch IP 10.x9.xx.52 resolves successfully to host exatest-ibb0.my.domain.com on node exatestceladm02.my.domain.com
SUCCESS:
SUCCESS: Switch IP 10.x9.xx.51 resolves successfully to host exatest-iba0.my.domain.com on node exatestceladm01.my.domain.com
SUCCESS: Switch IP 10.x9.xx.52 resolves successfully to host exatest-ibb0.my.domain.com on node exatestceladm01.my.domain.com
SUCCESS:
SUCCESS: X7 compute node exatestdbadm01.my.domain.com has updated Broadcom firmware
SUCCESS: X7 compute node exatestdbadm02.my.domain.com has updated Broadcom firmware
SUCCESS: Disk Tests are not running/active on any of the Storage Servers.
SUCCESS: Cluster Version 12.2.0.1.181016 is compatible with OL7 on exatestdbadm01
SUCCESS: Cluster Version 12.2.0.1.181016 is compatible with OL7 on exatestdbadm02
SUCCESS: Cluster Version 12.2.0.1.181016 is compatible with OL7 on exatestdbadm01
SUCCESS: Cluster Version 12.2.0.1.181016 is compatible with OL7 on exatestdbadm02
SUCCESS: Cluster Version 12.2.0.1.181016 is compatible with OL7 on exatestdbadm01
SUCCESS: Cluster Version 12.2.0.1.181016 is compatible with OL7 on exatestdbadm02
SUCCESS: Disk size 10000GB on cell exatestceladm01.my.domain.com matches the value specified in the OEDA configuration file
SUCCESS: Disk size 10000GB on cell exatestceladm02.my.domain.com matches the value specified in the OEDA configuration file
SUCCESS: Disk size 10000GB on cell exatestceladm03.my.domain.com matches the value specified in the OEDA configuration file
SUCCESS: Disk size 10000GB on cell exatestceladm04.my.domain.com matches the value specified in the OEDA configuration file
SUCCESS: Disk size 10000GB on cell exatestceladm05.my.domain.com matches the value specified in the OEDA configuration file
SUCCESS: Disk size 10000GB on cell exatestceladm06.my.domain.com matches the value specified in the OEDA configuration file
Successfully completed execution of step Validate Configuration File [elapsed Time [Elapsed = 250301 mS [4.0 minutes] Thu Mar 07 12:35:31 CET 2019]]
[root@exatestdbadm01 linux-x64]#

 

 

Execution of all remaining steps

Than, because we felt confident, we decide to invoke all remaining steps together:

root@exatestdbadm01 linux-x64]# ./install.sh -cf TVD-exatest.xml -r 1-18
...
..

 

The final result is the Exadata Machine installed with six Oracle VMs, and three Grid Infrastructure clusters each one running a test RAC database.

 

 

My OOW18 Summary

 

For those who are interested here my major takeaways from the OOW18

 

As we all know, since few years the HOTTEST topic advertized at the OOW is “Cloud Computing”, but this time Oracle Cloud was no longer alone!

In fact the focus was divided between the new Oracle OCI Cloud, also named by Larry as Second Generation of Cloud and the Autonomous Database.

 

OCI Second Gen of Cloud

Here a summary of the major advantages compared to the previous version:

– Security, guaranteed by robots which scan the network for any malicious attack.  

– The cutting edge virtual network, which brings up to 50GB speed and extreme flexibility.

– Bare Metal Infrastructure based on Exadata Machines.

– Aggressive pricing, compared to the competitors.

 

Autonomous Database.

The Autonomous Database option is now available for OLTP and DWH databases and includes new capabilities like automatic index creation and column stored table conversion. In version 19 it will manage online memory increase and additional tuning options.

As announces during Larry’s keynote, the  Autonomous database will be also available with the Cloud @ Customer option (on Exadata only), ant it will no longer require human labor (DBA and Sys Admin intervention), because Self Provisioning, Self Driving, Self Tuning and Self Repairing.

For non-technical people it looks magic, but it is few steps from what we already use in a standard Oracle 12c Database. In fact Autonomous Database leverages a bunch of database advisors and tuning options, now orchestrated by an Artificial Intelligence and Machine Learning software, in order to provide data-driven predictions and decisions.

Over the next few years, Autonomous Database will be enriched with several new options, improving the quality of live of many DBAs, which will be relieved of the majority of the tedious and recurring tasks, leaving the most added value tasks under their own responsibility.

Last but not least, the Autonomous Database runs in a very high end configurations (Oracle guarantees 99,995% of availability), which is quite expensive to acquire due to the list of mandatory requirements: Exadata, RAC, Active DG, Multitenant, Tuning Pack, Diagnostic Pack etc..

 

Exadata Machine

Several interesting features are coming next year with the introduction of the INTEL Optane DC Persistent Memory for even faster OLTP.

This new type of memory will be installed on the Storage Cell and used as accelerator in front of Flash memory.

The database node will  access to the Persistent Memory via RDMA with a gain up to 20 x faster access latency.

Oracle is developing the more and more Remote Direct Memory Access (RDMA) instructions for Cache Fusion and Storage Cell operations in order to offload the database nodes and increase the overall performance.

Stay tuned on Exadata Machine because the next generation will also include BIG architectural change…

 

Oracle Virtual Machine (OVM)

One curiosity directly collected at Linux Virtualization booth is that even though the next generation of hypervisor will be based on KVM, Oracle will keep calling it OVM and of course the current OVM product based on XEN (OVS, OVM) will still be in use by many companies.

How possibly the customers can get confused ?!?

 

With this I finished, although there would be much more to write.

 


 

Exadata How Safely Erase All Data

When the time arrives to decommission an environment with sesitive data, we are frequently confronted to the problem how to certify to our customer or management the erase of all data and logs.

On Exadata Machine starting from the software release 12.2.1.1.0, this problem has been elegantly solved by Oracle introducing a new utility called Secure Eraser; which securely erases data on hard drives, flash devices, internal USBs, and resets ILOM to factory default.

 

In earlier software versions, the Exadata Storage Software includes CellCli commands to securely erase the user data:

CellCLI> DROP GRIDDISK ALL FLASHDISK PREFIX=DATA, ERASE=7pass
CellCLI> DROP GRIDDISK ALL PREFIX=DATA, ERASE=3pass

and

CellCLI> DROP CELLDISK ALL FLASHDISK ERASE=7pass 
CellCLI> DROP CELL ERASE=3pass

Unfortunatly those commands only cover the user data stored on the Storage Cell, and none of them produces an official certificate with the summary of the actions taken to guarantee the wipe of the data. While all this is done by Secure Eraser on all Compute and Storage nodes, sanitizing on all type of devices: user data, OS logs and network configurations.

 

Depending from the Exadata model, a subset of all of available options to execute Secure Eraser is possible:

  • Automatic Secure Eraser Ethrough PXE Boot
  • Interactive Secure Eraser through PXE Boot
  • Interactive Secure Eraser through Network Boot
  • Interactive Secure Eraser through External USB

 


 

Recently I used Secure Eraser through External USB on one Exadata X7-2 Machine and here are reported the different steps.

 

Copy the Secure Eraser Diagnostic image from MOS 2180963.1 to a USB stick.

 # dd if=image_diagnostics_18.1.4.0.0_LINUX.X64_180125.3-1.x86_64.usb of=/dev/sdb

 

Boot the server using the USB device with the Secure Eraser Diagnostic image

Exa_BootList.jpg

 

After login, start the Secure Erase process

/usr/sbin/secureeraser --erase --all --flash_erasure_method=7pass --hdd_erasure_method=3pass --technician=Emiliano_Fusaglia --witness=Mario_Bros --output=/mnt/iso

 

 

At the end of the erase process a Data Erasure Certificate similar to the one on the example below will be available in TXT, HTML and PDF format.

Exa_SecureErase_Report


 

 

 

Exadata Storage Snapshots

This post describes how to implement Oracle Database Snapshot Technology on Exadata Machine.

Because Exadata Storage Cell Smart Features, Storage Indexes, IORM and Network Resource Manager work at level of ASM Volume Manager only, (and they don’t work on top of ACFS Cluster File System), the implementation of the snapshot technology is different compared to any other non-Exadata environment.

At this purpuse Oracle has developed a new type of ASM Disk Group called SPARSE Disk Group. It uses ASM SPARSE Grid Disk based on Thin Provisioning to save the database snapshot copies and the associated metadata, and it supports non-CDB and PDB snapshot copy.

The implementation requires the following minimal software versions :

  • Exadata Storage Software version 12.1.2.1.0.
  • Oracle Database version 12.1.0.2 with bundle patch 5.
One major restriction applies to Exadata Storage Sanpshot compared to ACFS;
the source database must be a shared copy open on read only and called Test Master. The Test Master Database can not be modified or deleted as long the latest child snapshot is in use.
This restriction exists because Exadata Snapshot technology uses “allocate on first write”, and not “copy on write” (like for ACFS), and the snapshot is per-database-datafile.
When a child snapshot issue a write, the write goes to a private copy of that block inside the snapshot, preserving the original block value which can be accessed by other child snapshots of the same Test Master.

How to Implement Exadata Storage Snapshots in a PDB Environment

Check the celldisks for available free space to allocate to a new SPARSE Disk Group

[root@strgceladm01 ~]# cellcli -e list celldisk attributes name,freespace
 CD_00_strgceladm01 853.34375G
 CD_01_strgceladm01 853.34375G
 CD_02_strgceladm01 853.34375G
 CD_03_strgceladm01 853.34375G
 CD_04_strgceladm01 853.34375G
 CD_05_strgceladm01 853.34375G
 CD_06_strgceladm01 853.34375G
 CD_07_strgceladm01 853.34375G
 CD_08_strgceladm01 853.34375G
 CD_09_strgceladm01 853.34375G
 CD_10_strgceladm01 853.34375G
 CD_11_strgceladm01 853.34375G
 FD_00_strgceladm01 0
 FD_01_strgceladm01 0
 FD_02_strgceladm01 0
 FD_03_strgceladm01 0
[root@strgceladm01 ~]#


[root@strgceladm02 ~]# cellcli -e list celldisk attributes name,freespace
 CD_00_strgceladm02 853.34375G
 CD_01_strgceladm02 853.34375G
 CD_02_strgceladm02 853.34375G
 CD_03_strgceladm02 853.34375G
 CD_04_strgceladm02 853.34375G
 CD_05_strgceladm02 853.34375G
 CD_06_strgceladm02 853.34375G
 CD_07_strgceladm02 853.34375G
 CD_08_strgceladm02 853.34375G
 CD_09_strgceladm02 853.34375G
 CD_10_strgceladm02 853.34375G
 CD_11_strgceladm02 853.34375G
 FD_00_strgceladm02 0
 FD_01_strgceladm02 0
 FD_02_strgceladm02 0
 FD_03_strgceladm02 0
[root@strgceladm02 ~]#


[root@strgceladm03 ~]# cellcli -e list celldisk attributes name,freespace
 CD_00_strgceladm03 853.34375G
 CD_01_strgceladm03 853.34375G
 CD_02_strgceladm03 853.34375G
 CD_03_strgceladm03 853.34375G
 CD_04_strgceladm03 853.34375G
 CD_05_strgceladm03 853.34375G
 CD_06_strgceladm03 853.34375G
 CD_07_strgceladm03 853.34375G
 CD_08_strgceladm03 853.34375G
 CD_09_strgceladm03 853.34375G
 CD_10_strgceladm03 853.34375G
 CD_11_strgceladm03 853.34375G
 FD_00_strgceladm03 0
 FD_01_strgceladm03 0
 FD_02_strgceladm03 0
 FD_03_strgceladm03 0
[root@strgceladm03 ~]#

For each Storage Cell Create a SPARSE Grid Disks as described below

[root@strgceladm01 ~]# cellcli -e CREATE GRIDDISK ALL PREFIX=SPARSE, sparse=true, SIZE=853.34375G
Cell disks were skipped because they had no freespace for grid disks: FD_00_strgceladm01, FD_01_strgceladm01, FD_02_strgceladm01, FD_03_strgceladm01.
GridDisk SPARSE_CD_00_strgceladm01 successfully created
GridDisk SPARSE_CD_01_strgceladm01 successfully created
GridDisk SPARSE_CD_02_strgceladm01 successfully created
GridDisk SPARSE_CD_03_strgceladm01 successfully created
GridDisk SPARSE_CD_04_strgceladm01 successfully created
GridDisk SPARSE_CD_05_strgceladm01 successfully created
GridDisk SPARSE_CD_06_strgceladm01 successfully created
GridDisk SPARSE_CD_07_strgceladm01 successfully created
GridDisk SPARSE_CD_08_strgceladm01 successfully created
GridDisk SPARSE_CD_09_strgceladm01 successfully created
GridDisk SPARSE_CD_10_strgceladm01 successfully created
GridDisk SPARSE_CD_11_strgceladm01 successfully created
[root@strgceladm01 ~]#

For each Storage Cell List all Grid Disks

[root@strgceladm01 ~]# cellcli -e list griddisk attributes name,size
 DATAC1_CD_00_strgceladm01 6.294586181640625T
 DATAC1_CD_01_strgceladm01 6.294586181640625T
 DATAC1_CD_02_strgceladm01 6.294586181640625T
 DATAC1_CD_03_strgceladm01 6.294586181640625T
 DATAC1_CD_04_strgceladm01 6.294586181640625T
 DATAC1_CD_05_strgceladm01 6.294586181640625T
 DATAC1_CD_06_strgceladm01 6.294586181640625T
 DATAC1_CD_07_strgceladm01 6.294586181640625T
 DATAC1_CD_08_strgceladm01 6.294586181640625T
 DATAC1_CD_09_strgceladm01 6.294586181640625T
 DATAC1_CD_10_strgceladm01 6.294586181640625T
 DATAC1_CD_11_strgceladm01 6.294586181640625T
 FGRID_FD_00_strgceladm01 2.0717315673828125T
 FGRID_FD_01_strgceladm01 2.0717315673828125T
 FGRID_FD_02_strgceladm01 2.0717315673828125T
 FGRID_FD_03_strgceladm01 2.0717315673828125T
 RECOC1_CD_00_strgceladm01 1.78143310546875T
 RECOC1_CD_01_strgceladm01 1.78143310546875T
 RECOC1_CD_02_strgceladm01 1.78143310546875T
 RECOC1_CD_03_strgceladm01 1.78143310546875T
 RECOC1_CD_04_strgceladm01 1.78143310546875T
 RECOC1_CD_05_strgceladm01 1.78143310546875T
 RECOC1_CD_06_strgceladm01 1.78143310546875T
 RECOC1_CD_07_strgceladm01 1.78143310546875T
 RECOC1_CD_08_strgceladm01 1.78143310546875T
 RECOC1_CD_09_strgceladm01 1.78143310546875T
 RECOC1_CD_10_strgceladm01 1.78143310546875T
 RECOC1_CD_11_strgceladm01 1.78143310546875T
 SPARSE_CD_00_strgceladm01 853.34375G
 SPARSE_CD_01_strgceladm01 853.34375G
 SPARSE_CD_02_strgceladm01 853.34375G
 SPARSE_CD_03_strgceladm01 853.34375G
 SPARSE_CD_04_strgceladm01 853.34375G
 SPARSE_CD_05_strgceladm01 853.34375G
 SPARSE_CD_06_strgceladm01 853.34375G
 SPARSE_CD_07_strgceladm01 853.34375G
 SPARSE_CD_08_strgceladm01 853.34375G
 SPARSE_CD_09_strgceladm01 853.34375G
 SPARSE_CD_10_strgceladm01 853.34375G
 SPARSE_CD_11_strgceladm01 853.34375G
[root@strgceladm01 ~]#

From ASM Instance Create a SPARSE Disk Group

SQL> CREATE DISKGROUP SPARSEC1 EXTERNAL REDUNDANCY DISK 'o/*/SPARSE_CD_*'
ATTRIBUTE
'compatible.asm' = '12.2.0.1',
'compatible.rdbms' = '12.2.0.1',
'cell.smart_scan_capable'='TRUE',
'cell.sparse_dg' = 'allsparse',
'AU_SIZE' = '4M';

Diskgroup created.

Set the following ASM attributes on the Disk Group hosting the Test Master Database

ALTER DISKGROUP DATAC1 SET ATTRIBUTE 'access_control.enabled' = 'true';

Grant access to the OS RDBMS user used to access to the Disk Group

ALTER DISKGROUP DATAC1 ADD USER 'oracle';

From an ASM Instance Set ownership permissions for every file that belongs solely to the PDB being snapped cloned as per example below

alter diskgroup DATAC1 set ownership owner='oracle' for file '+DATAC1/CDBT/<xxxxxxxxxxxxxxxxxxx>/DATAFILE/system.xxx.xxxxxxx';
alter diskgroup DATAC1 set ownership owner='oracle' for file '+DATAC1/CDBT/<xxxxxxxxxxxxxxxxxxx>/DATAFILE/sysaux.xxx.xxxxxxx';
alter diskgroup DATAC1 set ownership owner='oracle' for file '+DATAC1/CDBT/<xxxxxxxxxxxxxxxxxxx>/DATAFILE/users.xxx.xxxxxxx';
...
..

Restart the Master Test PDB in Read Only

alter pluggable database PDBTESTMASTER close immediate instances=all;
alter pluggable database PDBTESTMASTER open read only;

Create the first PDB Snapshot Copy on Exadata SPARSE Disk Group

Create pluggable database PDBDEV01 from PDBTESTMASTER tempfile reuse create_file_dest='+SPARSEC1' snapshot copy;

Feedback of the Exadata Storage Snapshots

The ability to create storage efficient database copies in a few seconds, independently from the size of the Test Master is very useful for today IT departments; but such extreme velocity and flexibility is not entirely free. In fact performance tests on a I/O bound workload have highlighted important performance degradation. This reminds us that as defined by Oracle Corporation, the Snapshot Technology, included on Exadata Machine remains a non-production option.

The “Great” ODA overwhelming the Exadata

Introduction

This article try to explain the technical reasons of the Oracle Database Appliance success, a well-known appliance with whom Oracle targets small and medium businesses, or specific departments of big companies looking for privacy and isolation from the rest of the IT. Nowadays this small and relatively cheap appliance (around 65’000$ price list) has evolved a lot, the storage has reached an important capacity 128TB raw expansible to 256TB, and the two X5-2 servers are the same used on the database node of the Exadata machine. Many customers, while defining the new database architecture evaluate the pros and cons of acquiring an ODA compared to the smallest Exadata configuration (one eight of a Rack). If the customer is not looking for a system with extreme performance and horizontal scalability beyond the two X5-2 servers, the Oracle Database Appliance is frequently the retained option.

Some of the ODA major features are:

  • High Availability: no single point of failure on all hardware and software components.
  • Performance: each server is equipped with 2×18-core Intel Xeon and 256GB of RAM extensible up to 768GB, cluster communication over InfiniBand. The shared storage offers a multi-tiers configuration with HDDs at 7.2K rpm and two type of SSDs for frequently accessed data and for database redo logs.
  • Flexibility & Scalability: running RAC, RAC One node and Single Instance databases.
  • Virtualized configuration: designed for offering Solution in-a-box, with high available virtual machines.
  • Optimized licensing model: pay-as-you-grow model activating a crescendo number of CPU-cores on demand, with the Bare Metal configuration; or capping the resources combining Oracle VM with the Hard Partitioning setup.
  • Time-to-market: no-matter if the ODA has to be installed bare metal or virtualized, this is a standardized and automated process generally completed in one or two day of work.
  • Price: the ODA is very competitive when comparing the cost to an equivalent commodity architecture; which in addition, must be engineered, integrated and maintained by the customer.

 

At the time of the writing of this article, the latest hardware model is ODA X5-2 and 12.1.2.6.0 is the software version. This HW and SW combination offers unique features, few of them not even available on the Exadata machine, like the possibility to host databases and applications in one single box, or the possibility to rapidly and space efficiently clone an 11gR2 and 12c database using ACFS Snapshot.

 

 

ODA HW & SW Architecture

Oracle Database Appliance is composed by two X5-2 servers and a shared storage shelf, which optionally can be doubled. Each Server disposes of: two 18-core Intel Xeon E5-2699 v3; 256GB RAM (optionally upgradable to 768GB) and two 600GB 10k rpm internal disks in RAID 1 for OS and software binaries.

This appliance is equipped with redundant networking connectivity up to 10Gb, redundant SAS HBAs and Storage I/O modules, redundant InfiniBand interconnect for cluster communication enabling 40 Gb/second server-to-server communication.

The software components are all part of Oracle “Red Stack” with Oracle Linux 6 UEK or OVM 3, Grid Infrastructure 12c, Oracle RDBMS 12c & 11gR2 and Oracle Appliance Manager.

 

 

ODA Front view

Components number 1 & 2 are the X5-2 Servers. Components 3 & 4 are the Storage and the optionally Storage extension.

ODA_Front

 

ODA Rear view

Highlight of the multiple redundant connections, including InfiniBand for Oracle Clusterware, ASM and RAC communications. No single point of HW or SW failure.

ODA_Back

 

 

Storage Organization

With 16x8TB SAS HDDs a total raw space of 128TB is available on each storage self (64TB in configuration ASM double-mirrored and 42.7TB with ASM triple-mirrored). To offer better I/O performance without exploding the price, Oracle has implemented the following SSD devices: 4x400GB ASM double-mirrored, for frequently accessed data, and 4x200GB ASM triple-mirrored, for database redo logs.

As shown on the picture aside, each rotating disk has two slices, the external, and more performant partition assigned to the +DATA ASM disk group, and the internal one allocated to +RECO ASM disk group.

 

ODA_Disk

This storage optimization allows the ODA to achieve competitive I/O performance. In a production-like environment, using the three type of disks, as per ODA Database template odb-24 (https://docs.oracle.com/cd/E22693_01/doc.12/e55580/sizing.htm), Trivadis has measured 12k I/O per second and a throughput of 2300 MB/s with an average latency of 10ms. As per Oracle documentation, the maximum number of I/O per second of the rotating disks, with a single storage shelf is 3300; but this value increases significantly relocating the hottest data files to +FLASH disk group created on SSD devices.

 

ACFS becomes the default database storage of ODA

Starting from the ODA software version 12.1.0.2, any fresh installation enforces ASM Cluster File System (ACFS) as lonely type of database storage support, restricting the supported database versions to 11.2.0.4 and greater. In case of ODA upgrade from previous release, all pre-existing databases are not automatically migrated to ACFS, but Oracle provides a tool called acfs_mig.pl for executing this mandatory step on all Non-CDB databases of version >= 11.2.0.4.

Oracle has decided to promote ACFS as default database storage on ODA environment for the following reasons:

  • ACFS provides almost equivalent performance than Oracle ASM disk groups.
  • Additional functionalities on industry standard POSIX file system.
  • Database snapshot copy of PDBs, and NON-CDB of version 11.2.0.4 or greater.
  • Advanced functionality for general-purpose files such as replication, tagging, encryption, security, and auditing.

Database created on ACFS follows the same Oracle Managed Files (OMF) standard used by ASM.

As in the past, the database provisioning requires the utilization of the command line interface oakcli and the selection of a database template, which defines several characteristics including the amount of space to allocate on each file system. Container and Non-Container databases can coexist on the same Oracle Database Appliance.

The ACFS file systems are created during the database provisioning process on top of the ASM disk groups +DATA, +RECO, +REDO, and optionally +FLASH. The file systems have two possible setups, depending on the database type Container or Non-Container.

  • Container database: for each CDB the ODA database-provisioning job creates dedicated ACFS file systems with the following characteristics:
Disk Characteristics ASM Disk group ACFS Mount Point
SAS Disk external partition +DATA /u02/app/oracle/oradata/datc<db_unique_name>
SAS Disk internal partition +RECO /u01/app/oracle/fast_recovery_area/rcoc<db_unique_name>
SSD Triple-mirrored +REDO /u01/app/oracle/oradata/rdoc<db_unique_name>
SSD Double-mirrored +FLASH (*) /u02/app/oracle/oradata/flashdata

 

  • Non-Container database: in case of Non-CDB the ODA database-provisioning job creates or resizes the following shared ACFS file systems:
Disk Characteristics ASM Disk group ACFS Mount Point
SAS Disk external partition +DATA /u02/app/oracle/oradata/datastore
SAS Disk internal partition +RECO /u01/app/oracle/fast_recovery_area/datastore
SSD Triple-mirrored +REDO /u01/app/oracle/oradata/datastore
SSD Double-mirrored +FLASH (*) /u02/app/oracle/oradata/flashdata

(*) Optionally used by the databases as Smart Flash Cache (extension of the SGA buffer cache), or allocated to store the hottest data files leveraging the I/O performance of the SSD disks.

 

Oracle Database Appliance Bare Metal

The bare metal configuration has been available since version one of the appliance, and nowadays it remains the default option proposed by Oracle, which pre-install the OS Linux on any new system. Very simple and intuitive to install thanks to the pre-built bundle software, which automates most of the steps. At the end of the installation, the architecture is very similar to any other two node RAC setup based on commodity hardware; but even from an operation point of view there are great advantages, because the Oracle Appliance Manager framework simplifies and accelerates the execution of almost any system and database administrator task.

Here below is depicted the ODA architecture when the bare metal configuration is in use:

ODA_Bare_Metal

 

Oracle Database Appliance Virtualized

When the ODA is deployed with the virtualization, both servers run Oracle VM Server, also called Dom0. Each Dom0 hosts in a local dedicated repository the ODA Base (or Dom Base), a privileged virtual machine where it is installed the Appliance Manager, Grid Infrastructure and RDBMS binaries. The ODA Base takes advantage of the Xen PCI Pass-through technology to provide direct access to the ODA shared disks presented and managed by ASM. This configuration reduces the VM flexibility; in fact, no VM migration is allowed for the two ODA Base, but it guarantees almost no I/O penalty in term of performance. With the Dom Base setup, the basic installation is completed and it is possible to start provisioning databases using Oracle Appliance Manager.

At the same time, the administrator can create new-shared repositories hosted on ACFS and NFS exported to the hypervisor for hosting the application virtual machines. Those application virtual machines are also identified with the name of Domain U.  The Domain U and the templates can be stored on a local or shared Oracle VM Server repository, but to enable the functionality to migrate between the two Oracle VM Servers a shared repository on the ACFS file system should be used.

Even when the virtualization is in use, Oracle Appliance Manager is the only framework for system and database administration tasks like repository creation, import of template, deployment of virtual machine, network configuration, database provisioning and so on, relieving the administrator from all complexity.

The implementation of the Solution-in-a-box guarantees the maximum Return on Investment of the ODA; in fact, while restricting the virtual CPUs to license on the Dom Base it allows relocating spare resources to the application virtual machines as showed on the picture below.

ODA_Virtualized

 

 

ODA compared to Exadata Machine and Commodity Hardware

As described on the previous sections, Oracle Database Appliance offers unique features such as pay-as-you-grow, solution-in-a-box and so on, which can heavily influence the decision for a new database architecture. The aim of the table below is to list the main architecture characteristics to evaluate while defining a new database infrastructure, comparing the result between Oracle Database Appliance, Exadata Machine and a Commodity Architecture based on Intel Linux engineered to run RAC databases.

Table_Architectures

As shown by the different scores of the three architectures, each solution comes with points of strength and weakness; about the Oracle Database Appliance, it is evident that due to its characteristics, the smallest Oracle Engineered System remains a great option for small, medium database environments.

 

Conclusion

I hope this article keep the initial promise to explain the technical reasons of the Oracle Database Appliance success, and it has highlighted the great work done by Oracle, engineering this solution on the edge of the technology keeping the price under control.

One last summary of what in my opinion are the major benefits offered by the ODA:

  • Time-to-market: Thanks to automated processes and pre-build software images, the deployment phase is extremely rapid.
  • Simplicity: The use of standard software components, combined to the appliance orchestrator Oracle Appliance Manager makes the ODA very simple to operate.
  • Standardization & Automation: The Appliance Manager encapsulates and automatizes all repeatable and error-prone tasks like provisioning, decommissioning, patching and so on.
  • Vendor certified platform: Oracle validates and certifies the compatibility among all HW & SW components.
  • Evolution: Over the time, the ODA benefits of specific bug fixing and software evolution (introduced by Oracle though the quarterly patch sets); keeping the system on the edge for longer time when compared to a commodity architecture.